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Abstract 26 

Large neuroimaging datasets, including information about structural (SC) and functional connectivity (FC), 27 

play an increasingly important role in clinical research, where they guide the design of algorithms for automated 28 

stratification, diagnosis or prediction. A major obstacle is, however, the problem of missing features (e.g., lack 29 

of concurrent DTI SC and resting-state fMRI FC measurements for many of the subjects). 30 

We propose here to address the missing connectivity features problem by introducing strategies based on 31 

computational whole-brain network modeling. Using two datasets, the ADNI dataset and a healthy aging 32 

dataset, for proof-of-concept, we demonstrate the feasibility of virtual data completion (i.e., inferring “virtual 33 

FC” from empirical SC or “virtual SC” from empirical FC), by using self-consistent simulations of linear and 34 

nonlinear brain network models. Furthermore, by performing machine learning classification (to separate age 35 

classes or control from patient subjects) we show that algorithms trained on virtual connectomes achieve 36 

discrimination performance comparable to when trained on actual empirical data; similarly, algorithms trained 37 

on virtual connectomes can be used to successfully classify novel empirical connectomes. Completion 38 

algorithms can be combined and reiterated to generate realistic surrogate connectivity matrices in arbitrarily 39 

large number, opening the way to the generation of virtual connectomic datasets with network connectivity 40 

information comparable to the one of the original data. 41 

 42 

Significance statement 43 

Personalized information on anatomical connectivity (“structural connectivity”, SC) or coordinated resting 44 

state activation patterns (“functional connectivity’, FC) is a source of powerful neuromarkers to detect and track 45 

the development of neurodegenerative diseases. However, there are often “gaps” in the available information, 46 

with only SC (or FC) being known but not FC (or SC). Exploiting whole-brain modelling, we show that gap in 47 

databases can be filled by inferring the other connectome through computational simulations. The generated 48 

virtual connectomic data carry information analogous to the one of empirical connectomes, so that machine 49 

learning algorithms can be trained on them. This opens the way to the release in the future of cohorts of “virtual 50 

patients”, complementing traditional datasets in data-driven predictive medicine. 51 

 52 

  53 
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Introduction 54 

One of the greatest challenges today is to develop approaches allowing the useful exploitation of large-scale 55 

datasets in biomedical research in general (Margolis et al., 2014) and neuroscience and neuroimaging in 56 

particular (Van Horn and Toga, 2014). Progress in this direction is made possible by the increasing availability 57 

of large public datasets in the domain of connectomics (Van Essen et al., 2013; Poldrack and Gorgolewski, 58 

2014; Horien et al., 2020). This is true, in particular, for research in Alzheimer’s disease (AD), in which, despite 59 

decades of massive investment and a daunting literature on the topic, the partial and, sometimes contradictory 60 

nature of the reported results (World Alzheimer Report 2018) still prevents a complete understanding of the 61 

factors governing the progression of the disease (Braak & Braak, 1991; Braak et al., 2006; Komarova & 62 

Thalhauser, 2011; Henstridge et al., 2019) or of the diversity of cognitive deficits observed in different subjects 63 

(Iacono et al., 2009; Mungas et al., 2010; Allen et al., 2016). In AD research, datasets that compile rich and 64 

diverse genetic, biomolecular, cognitive, and neuroimaging (structural and functional) features for a large 65 

number of patients are playing an increasingly important role (Rathore et al., 2017; Iddi et al., 2019). Example 66 

applications include: the early diagnosis and prognosis by using MRI images (Dennis & Thompson, 2014; 67 

Chiesa et al., 2017; De Vos et al., 2018); the use of machine learning for automated patient classification 68 

(Cuingnet et al., 2011; Zhang et al., 2012; Moore et al., 2019) or prediction of the conversion from early stages 69 

to fully developed AD (Rombouts et al., 2005; Moradi et al., 2015; Casanova et al., 2018), with signs of 70 

pathology difficult to distinguish from “healthy aging” effects (Doan et al., 2017); the extraction of decision 71 

networks based on the combination of semantic knowledge bases and data mining of the literature (Sanchez et 72 

al., 2011; Kodamullil et al., 2015; Iyappan et al., 2016). 73 

Among the factors contributing to the performance of prediction and inference approaches in AD –and, more 74 

in general, other neurological or psychiatric diseases (Walter et al., 2016) or studies of aging (Cole and Franke, 75 

2017)– are not only the large size of datasets but also the multiplicity of features jointly available for each 76 

patient. Indeed, one can take advantage not only of the complementary information that different features could 77 

bring but also capitalize on possible synergies arising from their simultaneous knowledge (Wang et al., 2015; 78 

Zimmermann et al., 2016; Iddi et al., 2019). Unfortunately, even gold standard publicly available datasets in 79 

AD, such as the datasets released by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) consortium 80 

(Wyman et al., 2013; Beckett et al., 2015; Weiner et al., 2017), have severe limitations. Indeed, if they include 81 

neuroimaging features of different types –structural DTI and functional MRI– these features are simultaneously 82 

available for only a substantial minority of the subjects in the dataset (i.e., the feature coverage is not uniform 83 
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over the dataset). In addition, if the number of subjects included is relatively large (hundreds of subjects), it still 84 

is too small to properly qualify as “big data". Furthermore, the connectomic data themselves have an imperfect 85 

reliability, with a test/retest variability that can be quite large, making potentially difficult subject identifiability 86 

and, thus, personalized information extraction (Termenon et al., 2016).  87 

Here, we will introduce a new solution aiming at relieving the problems of partially missing features and 88 

limited sample size and illustrate their validity on the two independent example datasets. Specifically, we will 89 

focus on two examples of structural and functional neuroimaging datasets, as important proofs of concept: a first 90 

one addressing AD, mediated from the previously mentioned ADNI databases (Wyman et al., 2013; Beckett et 91 

al., 2015); and a second one investigating a cohort of healthy subjects over a broad span of adult age, to analyse 92 

the effects of normal aging (Zimmermann et al., 2016; Battaglia et al., 2020). It is important to stress however 93 

that the considered issues may broadly affect any other connectomic dataset gathered for data mining intents. 94 

To cope with missing connectomic features (and “filling the gaps” in neuroimaging datasets), we propose to 95 

build on the quickly maturating technology of mean-field whole-brain network modeling (see Deco et al., 2011 96 

for review). Indeed, computational modeling provides a natural bridge between structural and functional 97 

connectivity, the latter emerging as the manifestation of underlying dynamical states, constrained but not 98 

entirely determined by the underlying anatomy (Ghosh et al., 2008; Kirst et al., 2016). Theoretical work has 99 

shown that average functional connectivity properties in the resting-state can be accounted for by the 100 

spontaneous collective activity of brain networks informed by empirical structural connectivity (SC) when the 101 

system is tuned to operate slightly below a critical point of instability (Deco et al., 2011, 2012). Based on this 102 

finding, simulations of a model constructed from empirical DTI connectomes and then tuned to a suitable 103 

slightly sub-critical dynamic working point are expected to provide a good rendering of resting-state functional 104 

connectivity (FC). Such whole-brain simulations are greatly facilitated by the availability of dedicated 105 

neuroinformatic platforms –such as “The Virtual Brain” (TVB; Sanz-Leon et al., 2013, 2015; Woodman et al., 106 

2014)– and data pre-processing pipelines (Schirner et al., 2015; Proix et al., 2016), enabling brain model 107 

personalization and clinical translation (Jirsa et al., 2017; Proix et al., 2017). It thus becomes possible to 108 

complete the missing information in a dataset about BOLD fMRI FC by running a TVB simulation in the right 109 

regime, embedding the available empirical DTI SC (SC-to-FC completion). Analogously, algorithmic 110 

procedures based on mean-field modeling steps (“effective connectivity” approaches by Gilson et al. (2016; 111 

2018), here used for a different purpose) can be used to address the inverse problem of inferring a reasonable 112 

ersatz of SC from resting state FC (FC-to-SC completion). In this study we will demonstrate the feasibility of 113 
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both types of completion (SC-to-FC and FC-to-SC), applying alternative linear and nonlinear simulation 114 

pipelines to both the ADNI and the healthy ageing proof-of-concept datasets. 115 

Beyond a single step of virtual completion, by combining completion procedures – to map, e.g., from an 116 

empirical SC (or FC) to a virtual FC (or SC) and then, yet, to a “twice virtual” SC (or FC)– we can generate for 117 

each given empirical connectome a surrogate replacement, i.e. map every empirical SC or FC to a matching 118 

dual (bivirtual) connectome of the same nature. We show then that pairs of empirical and bivirtual dual 119 

connectivity matrices display highly correlated network topology features, such as node-level strengths or 120 

clustering and centrality coefficients (Bullmore & Sporns, 2009). We demonstrate along the example of relevant 121 

classification tasks (stratification of mild cognitive impairment (MCI) or AD patients from control subjects on 122 

the ADNI dataset and age-class prediction on the healthy aging dataset) that close performance can be reached 123 

using machine learning algorithms trained on actual empirical connectomes or on their duals. Furthermore, 124 

empirical connectomes can be correctly categorized by classifiers trained uniquely on virtual duals.  125 

To conclude, we provide systematic recipes for generating realistic surrogate connectomic data via data-126 

constrained mean-field models. We show that the information that we can extract from computationally inferred 127 

connectivity matrices are only moderately degraded with respect to the one carried by the original empirical 128 

data. This opens the way to the design and sharing of veritable “virtual cohorts” data, ready for machine-129 

learning applications in clinics, that could complement actual empirical datasets –facilitating learning through 130 

“data augmentation” (Yaeger et al., 197; Taylor & Nitschke, 2018)– or, even, potentially, fully replace them, 131 

e.g. when the sharing of real data across centers is restricted due to byzantine regulation issues (not applying to 132 

their totally synthetic but operationally-equivalent ersatz, the virtual and bivirtual duals). 133 

 134 

  135 
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Materials and Methods 136 

 137 

Two datasets for proof of concept 138 

We applied our data completion pipelines in this study to two different and independent neuroimaging 139 

datasets, from which SC and FC connectivity matrices could be extracted for at least a part of the subjects. A 140 

first dataset was obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 141 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Principal 142 

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic 143 

resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and 144 

neuropsychological assessment can be combined to measure the progression of mild cognitive impairment 145 

(MCI) and early Alzheimer’s disease (AD). We refer in the following to this first dataset as to the ADNI dataset. 146 

A second dataset was generated by Petra Ritter and co-workers at the Charité Hospital in Berlin, with the 147 

aim of studying and investigating changes of structural and static and dynamic functional connectivity occurring 148 

through healthy aging. This dataset was previously investigated in Zimmermann et al. (2016) and Battaglia et al. 149 

(2020) among others. We refer to this second dataset in the following as to the healthy aging dataset.   150 

 151 

 152 

ADNI dataset 153 

 154 

Data Sample. Raw neuroimaging data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) GO/2 155 

studies (Wyman et al., 2013; Beckett et al., 2015) were downloaded for 244 subjects. These included T1w 156 

images for all subjects, as well as DWI and rsfMRI images for separate cohorts of subjects. An additional 12 157 

subjects for which both DWI and rsfMRI were acquired in the same session were identified and their data also 158 

downloaded. 159 

A volumetric 96-ROI parcellation was defined on the MNI template and consisted of 82 cortical ROIs from 160 

the Regional Map parcellation (Kötter & Wanke, 2005) and an additional 14 subcortical ROIs spanning the 161 

thalamus and basal ganglia. Details on the construction of the 96-ROI parcellation can be found in Bezgin et al 162 

(2017). 163 

Among the 244 subjects we downloaded, 74 were control subjects, while the others were patients at different 164 

stages of the pathology progression. In this study, we performed a rough coarse-graining of the original ADNI 165 
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labels indicating the stage or type of pathology. We thus overall labeled 119 patients as “MCI” (grouping 166 

together the labels 4 patients as “MCI”, 64 as “EMCI” and 41 as “LMCI”) and 51 patients as “AD” (overall 170 167 

“Patients” for the simple classification experiments of Figure 6). 168 

Overall, T1 and DTI were jointly available for 88 subjects (allowing to reconstruct structural connectivity 169 

(SC) matrix), and T1 and fMRI for 178 (allowing to reconstruct functional connectivity (FC)). However, among 170 

the 244 subjects we downloaded, only 12 subjects (referred to as the “SCemp+FCemp” subset) had a complete set 171 

of structural and functional images (T1, DTI, fMRI), hinting at how urgently needed is data completion. 172 

 173 

Data Preprocessing. Neuroimaging data preprocessing was done using a custom Nipype pipeline 174 

implementation (Gorgolewski et al., 2011). First, raw neuroimaging data were reconstructed into NIFTI format 175 

using the dcm2nii software package (https://www.nitrc.org/projects/dcm2nii/). Skull stripping was performed 176 

using the Brain Extraction Tool (BET) from the FMRIB Software Library package (FSL v5) for all image 177 

modalities prior to all other preprocessing steps. Brain extraction of T1w images using BET was generally 178 

suboptimal and was supplemented by optiBET (Lutkenhoff et al., 2014), an iterative routine that improved brain 179 

extractions substantially by applying transformations and back-projections between the native brain mask and 180 

MNI template space. Segmentation of the T1w images was performed using FSL’s FAT tool with bias field 181 

correction to obtain into three distinct tissue classes. 182 

To improve the registration of the ROI parcellation to native space, the parcellation was first nonlinearly 183 

registered to a publicly-available older adult template (aged 70-74 years, Fillmore et al., 2015) using the 184 

Advanced Normalization Tools (ANTS, Avants et al., 2011) software package before subsequent registrations.  185 

Diffusion-weighted images were preprocessed using FSL’s eddy and bedpostx tools. The ROI parcellation 186 

was first nonlinearly registered to each subject’s T1w structural image and then linearly registered to the DWI 187 

image using ANTS. 188 

rsfMRI data were preprocessed using FSL’s FEAT toolbox. Preprocessing included motion correction, high-189 

pass filtering, registration, normalization, and spatial smoothing (FWHM: 5 mm). Subjects with excessive 190 

motion were excluded from our sample. Global white matter and cerebrospinal fluid signals (but not global 191 

mean signal) were linearly regressed from the rsfMRI data. 192 

All images were visually inspected following brain extraction and registrations to ensure correctness. 193 

 194 



 

 8 

SC Construction. Details of tractography methods for reconstructing each subject’s structural connectome can 195 

be found in Shen et al (2019 a, b). Briefly, FSL’s probtrackx2 was used to perform tractography between all 196 

ROIs. The set of white matter voxels adjacent to a grey matter ROI was defined as the seed mask for that 197 

particular ROI. Grey matter voxels adjacent to each seed mask were used to define an exclusion mask. For intra-198 

hemispheric tracking, an additional exclusion mask of the opposite hemisphere was additionally defined. 199 

Tractography parameters were set to a curvature threshold of 0.2, 5000 seeds per voxel, a maximum of 2000 200 

steps, and a 0.5 mm step length. The connection weight between each pair of ROIs was computed as the number 201 

of streamlines detected between the ROIs, divided by the total number of streamlines sent from the seed mask. 202 

This connectivity information was compiled for every subject in a matrix of empirical structural connectivity 203 

SCemp. 204 

 205 

rsfMRI Timeseries and FC Construction. Empirical rsfMRI time-series for each ROI were computed using a 206 

weighted average approach that favored voxels nearer the center of each ROI (Shen et al., 2012). Each subject’s 207 

matrix of empirical functional connectivity FCemp was determined by Pearson correlation of these recorded 208 

rsfMRI time-series. 209 

 210 

Healthy aging dataset 211 

 212 

Data Sample. Forty-nine healthy subjects between the ages of 18 and 80 (mean 42.16 ± 18.37; 19 male/30 213 

female) were recruited as volunteers. Subjects with a self-reported history of neurological, cognitive, or 214 

psychiatric conditions were excluded from the experiment. Research was performed in compliance with the 215 

Code of Ethics of the World Medical Association (Declaration of Helsinki). Written informed consent was 216 

provided by all subjects with an understanding of the study prior to data collection, and was approved by the 217 

local ethics committee in accordance with the institutional guidelines at Charité Hospital, Berlin.  218 

 219 

Acquisition procedures. Acquisition procedures for this data (Magnetic resonance acquisition procedure, 220 

dwMRI Data Preprocessing and Tractography, fMRI Data Preprocessing, computation of SC and FC 221 

connectome matrices) have been described by Zimmermann et al. (2013), where we redirect the reader 222 

interested in full detail. 223 

 224 
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Briefly, functional and structural image acquisition was performed on a 3T Siemens Tim Trio Scanner MR 225 

equipped with a 12-channel Siemens head coil. After anatomical and dwMRI measurements, subjects were 226 

removed from the scanner and again put in later for the functional measurements. Data were obtained from 227 

subjects at resting state; subjects were asked to close their eyes, relax, and avoid falling asleep.  228 

Anatomical and diffusion images were preprocessed using a fully automated open-source pipeline for extraction 229 

of functional and structural connectomes (Schirner et al., 2015). The pipeline performed the following steps. 230 

Using the FreeSurfer software toolbox (http://surfer.nmr. mgh.harvard.edu/), anatomical T1-weighted images 231 

were motion corrected and intensity normalized, nonbrain tissue was removed, and a brain mask was generated. 232 

White matter and subcortical segmentation was performed, and a cortical parcellation based on the probabilistic 233 

Desikan– Killiany Freesurfer atlas divided the gray matter into 68 ROIs (regions of interest, 34 per hemisphere) 234 

(Desikan et al., 2006). The diffusion data were further corrected (for head movement, eddy current distortions, 235 

etc.). Probabilistic fiber tracking was performed using MRTrix streamtrack algorithm.  236 

The fMRI resting-state preprocessing was performed using the FEAT (fMRI Expert Analysis Tool) Version 6.0 237 

first-level analysis software tool from the FMRIB (Functional MRI of the Brain) Software Library 238 

(www.fmrib.ox. ac.uk). MCFLIRT motion correction was used to adjust for head movement. Nuisance variables 239 

were regressed from the BOLD signal, including the six motion parameters, mean white matter, and CSF sig- 240 

nals. Regression of global mean was not performed. 241 

 242 

Two types of computational whole brain models 243 

To bridge between SC and FC via dynamics, we relied on computational modelling of whole-brain intrinsic 244 

dynamics. We used two categories of models differing in their complexity, Stochastic Linear Models (SLM) and 245 

fully non-linear Mean-Field Models (MFM). SLM procedures are used for linear SC-to-FC and FC-to-SC 246 

completions, while MFM procedures are used for analogous but nonlinear completions. 247 

 248 

SLM models  249 

The SLM model used in this study is a linear stochastic system of coupled Ornstein-Uhlenbeck processes 250 

which is deeply investigated in (Saggio et al., 2016). For each brain region, neural activity ݔ(ݐ) is modeled as a 251 

linear stochastic model, coupled to the fluctuations of other regions: 252 

(ݐ)̇࢞ 253  = (ݐ)࢞ +  254 (1)     (ݐ)ߦߪ



 

 10 

 255 

where A is the coupling matrix, ߦ is a normal Gaussian white noise, and ߪ the standard deviation of the local 256 

drive noise. The coupling matrix A can be written as: 257 

 258 

      = ࡵ−  +  259 (2)      ࢃ.ܩ

 260 

where I is the identity matrix, G is the global coupling parameter and W is a weight matrix set to match SCemp. 261 

The negative identity matrix guarantees that the nodes have a stable equilibrium point. If all the eigenvalues of 262 

A are negative, which happens for all positive values of G < Gcritic = 1 ⁄(ߣ)ݔܽ݉  (where ߣ are the eigenvalues 263 

of W), the system will be in an equilibrium state. After some mathematical steps (Saggio et al., 2016), the 264 

covariance matrix between regional fluctuations can be analytically expressed at this critical point Gcritic as: 265 

 266 

      = ିఙమଶ  ଵ      (3) 267ି

 268 

whose normalized entries provide the strength of functional connectivity between different regions. The noise 269 

strength can be arbitrarily set at the critical point since it provides only a scaling constant to be reabsorbed into 270 

the Pearson correlation normalization. However, the only parameter that needs to be explored is ܩ, whose range 271 

goes from Gmin = 0, i.e. uncoupled nodes, to slightly before Gcritic = 1 ⁄(ߣ)ݔܽ݉ , or Gmax = Gcritic – ߳. In Extended 272 

Data Figure 3-1A, running explicit simulations of SLM models for different values of coupling G and 273 

evaluating on the “FCemp + SCemp” subset of ADNI subjects the match between the simulated and empirical 274 

activity correlation matrices, we confirm (cf. e.g. Hansen et al., 2015) that the best match (max of Pearson 275 

correlation between the upper-triangular parts of the empirical and virtual FCs) is obtained at a slightly 276 

subcritical point for G* = Gcritic – ߳. 277 

 278 

 279 

Linear SC-to-FC and FC-to-SC completion 280 

To infer FCSLM from SCemp , we chose to always use a common value G*ref = 0.83, which is the median of 281 

G* for all 12 “FCemp + SCemp” subjects in the ADNI and Healthy Ageing dataset (the error made in doing this 282 

approximation is estimated to be less than 1% in Extended Data Fig. 3-1 C). When the connectome FCemp is not 283 

known, equations (2) and (3) can directly be used to evaluate the covariance matrix C (setting σ = 1 and G = 284 
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G*ref). We then estimate the regional fluctuation covariance from these inferences and normalize it into a 285 

Pearson correlation matrix to infer FCSLM (See pseudo-code in Table 1-1). Linear FCSLM completions for our 286 

ADNI dataset and for the Healthy Aging dataset can be downloaded as MATLAB® workspace within Extended 287 

Data FC_SLM.mat (available at the address https://github.com/FunDyn/VirtualCohorts).   288 

To infer SCSLM from FCemp, we invert the analytical expressions of eqs. (2) and (3) and always set σ = 1 and 289 

G = G*ref leading to: 290 

 291 

∗ࢃ      = ∗ܩ/ଵି−      (4) 292 

 293 

where C is the covariance matrix estimated from empirical BOLD time-series. The linearly completed 294 

SCSLM is then set to be identical to W* setting its diagonal to zero to avoid offsets, which would be meaningless 295 

given the conventional choice of noise σ which we have made (see Table 2-1). Note that all the free parameters 296 

of the SLM model appear uniquely as scaling factors and do not affect the (normalized) correlation of the 297 

inferred SCSLM with the SCemp. However, the absolute strengths of inferred structural connections remain 298 

arbitrary, with only the relative strengths between different connections being reliable (since unaffected by 299 

arbitrary choices of scaling parameters; see pseudo-code in Table 2-1). Linear SCSLM completions for the ADNI 300 

dataset and for the Healthy Aging dataset can be downloaded as MATLAB® workspace within Extended Data 301 

SC_SLM.mat (available at the address https://github.com/FunDyn/VirtualCohorts).   302 

 303 

 304 

MFM models 305 

For non-linear completion algorithms, we performed simulations of whole-brain mean-field models 306 

analogous to Deco et al. (2013) or Hansen et al. (2015). We used a modified version of the mean-field model 307 

designed by Wong and Wang (2006), to describe the mean neural activity for each brain region, following the 308 

reduction performed in (Deco et al., 2013). The resulting neural mass equations are given by: 309 

 310 

     ௗௌௗ௧ = ିௌఛೄ + (1 − ܵ)ܴߛ +  311 (5)      (ݐ)ߟߪ

 312 

     ܴ = ௫ିଵି௫ [ିௗ(௫ି)]     (6) 313 

 314 
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ݔ      = ேܬ߱ ܵ + ܩேܬ ∑ ܥ ܵ + ܫ     (7) 315 

 316 

where ܵ represents NMDA synaptic input currents and ߬ௌ the NMDA decay time constant; ܴ is collective 317 

firing rates; ߛ = 0.641 is a kinetic parameter; ܽ = ܾ ,ଵି(ܥ݊.ܸ)270 = ݀ ,ݖܪ108 =  are parameters 318 ݏ0.154

values for the input-output function; ݔare the total synaptic inputs to a regions; ܬே =  is an intensity 319 ܣ0.2609݊

scale for synaptic currents; ߱ is the relative strength of recurrent connections within the region; ܥ are the 320 

entries of the SCemp matrix reweighted by global scale of long-range connectivity strength G as a control 321 

parameter; ߪ is the noise amplitude, and ߟ is a stochastic Gaussian variable with a zero mean and unit variance. 322 

Finally, ܫ represents the external input and sets the level of regional excitability. Different sets of parameters 323 

yield different neural network dynamics and, therefore, patterns of FCMFM non-stationarity.   324 

To emulate BOLD fMRI signals, we then transformed the raw model output activity ݔ through a standard 325 

Balloon-Windkessel hemodynamic model. All details of the hemodynamic model are set according to Friston et 326 

al. (2003).  327 

 328 

 329 

Non-linear SC-to-FC completion 330 

In general, our simple MFM model has three free parameters at the level of the local neural mass dynamics 331 

(τ,߱, and I0) and one free global parameter G. Since changing the values of ߱ and I0 had lesser effects on the 332 

collective dynamics of the system (see Extended Data Figure 3-2), we set their values to ω = 0.9 and I0 = 0.32 333 

respectively and remain then just two free parameters which we allow to vary in the ranges G ∈ [1 3] and τ ∈ [1 334 

100] ms when seeking for an optimal working point of the model. As revealed by the analyses of Figure 3, the 335 

zone in this restricted parameter space associated with the best FC-rendering performance can be identified 336 

through the joint inspection of three scores, varying as a function of both G and τ. The first criterion is the 337 

spatial heterogeneity of activation (see Table 1, line 2.5) computed by taking the coefficient of variation of 338 

BOLDMFM time-series. 339 

By computing the Pearson correlation coefficient of upper-triangular between FCMFM and FCemp for every 340 

subject from “SCemp + FCemp” subset in the ADNI dataset (see Table 1, line 2.3), we obtained a best-fitting zone 341 

in a narrow concave stripe (see Figure 3A for one subject); (G*, τ*) parameter set, bring the system to this best-342 

fitting zone and values lower than this is (ିܩ, ߬ି) set and higher values are (ܩା, ߬ା). Qualitatively analogous 343 

results are found for the healthy aging dataset. This non-monotonic behavior of yellow zone in G/τ plane occurs 344 
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where three criteria are jointly met; the second criterion is the clustering coefficient of time-average FCMFM 345 

matrices (see Table 1, line 2.6) and finally, the third criterion is the clustering coefficient of dFCMFM matrices 346 

(see Table 1, line 2.6), where the dFC matrices were computed for an arbitrary window using the dFCwalk 347 

toolbox (Arbabyazd et al., 2020; https://github.com/FunDyn/dFCwalk.git). By knowing the optimal working 348 

point of the system where all three criteria are jointly optimum (see Table 1, line 2), we freeze the algorithm and 349 

finally run a last simulation with the chosen parameters to perform non-linear SC-to-FC data completion (see 350 

Table 1, lines 3 to 5). Non-linear FCMFM completions for our ADNI dataset and for the Healthy Aging dataset 351 

can be downloaded as a MATLAB® workspace within Extended Data FC_MFM.mat (available at the address 352 

https://github.com/FunDyn/VirtualCohorts). 353 

 354 

Non-linear FC-to-SC completion 355 

We implemented a heuristic approach to infer the most likely connectivity matrix (i.e. Effective 356 

Connectivity) that maximizes the similarity between empirical and simulated functional connectivity. As an 357 

initial point, we considered a random symmetric matrix and removed diagonal as SC*(0) (see Table 2, line 1) and 358 

run the algorithm in Table 1 in order to simulate the FC*(0). Then iteratively we adjusted the SC as a function of 359 

the difference between the current FC and empirical FC (see Table 2, line 2), in other words 360 

SC*(1) = SC*(0) + ∆FC(0) where ∆FC(0) = FCemp – FC*(0) and  is the learning rate (see Table 2, line 3). The 361 

iteration will stop when the correlation between FCemp and FC*(k) reaches to the threshold CCtarget = 0.7 and 362 

giving the SC*(k) as SCMFM. All the parameter used in this section is identical to the non-linear SC-to-FC 363 

completion procedure. Nonlinear SCMFM completions for our ADNI and healthy aging datasets can be 364 

downloaded as a MATLAB® workspace within Extended Data SC_MFM.mat (available at the address 365 

https://github.com/FunDyn/VirtualCohorts).   366 

 367 

Trivial completion using the “other connectome” 368 

In the case in which one of the two connectomes is missing (e.g. just SC available but not FC) one may think 369 

to use the available connectome (in this example, SC) as a “good guess” for the missing one (in this example, 370 

FC). We refer to this trivial procedure as a completion using the other connectome. If the match quality between 371 

surrogate connectomes obtained via more complex procedures and the target empirical connectome to 372 

reconstruct happened to be comparable with the one that one can get via the trivial completion, then it would not 373 

be worth using more sophisticated methods. We assessed then, for comparison with other strategies, the 374 
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performance of such trivial completion approach on the “SCemp + FCemp” subset of the ADNI dataset and on the 375 

whole Healthy Aging dataset. In order for a completion approach to be considered viable, it is necessary that it 376 

outperforms significantly this trivial completion via the “other type” connectome, which can be quantified by a 377 

relative improvement coefficient: 378 

∆୲୰୧୴୧ୟ୪ =  CC[Virtual Connectome, Actual Connectome]  −  CC[Other Connectome, Actual connectome] CC[Other Connectome, Actual connectome]  % 

 379 

Bi-virtual data completion 380 

The pipelines for data completion described above can be concatenated, by performing e.g. FC-to-SC 381 

completion on a virtually FC or SC-to-FC completion on a virtual SC (rather than actual FCemp or SCemp, 382 

respectively). In this way, one can create bi-virtual dual counterparts SCbi-MFM (FCbi-MFM) or SCbi-SLM (FC bi-SLM) 383 

for any of the available empirical SCemp (FCemp) by applying in sequence non-linear MFM-based or linear SLM-384 

based procedures for SC-to-FC and then FC-to-SC completion (or, conversely, FC-to SC followed by SC-to-FC 385 

completions). Linear and nonlinear bi-virtual completions for our ADNI and Healthy Aging datasets can be 386 

downloaded as MATLAB® workspaces within Extended Data SC_bivirt.mat and FC_bivirt.mat (available at 387 

the address https://github.com/FunDyn/VirtualCohorts).   388 

For every pair of subjects, we computed the correlation distance between the respective empirical 389 

connectomes (pairs of FCemp or SCemp) and the corresponding bivirtual duals (pairs of FCbi-MFM or SCbi-MFM) and 390 

plotted the empirical-empirical distances vs the corresponding bivirtual-bivirtual distances (cf. Figure 6) to 391 

reveal the large degree of metric correspondence between real and bivirtual dual spaces. This correspondence 392 

was also quantified computing Pearson Correlation between empirical and bivirtual pairwise distances. These 393 

correlations (computed as well for virtual connectomes, beyond the bivirtual duals) are tabulated in Table 4. 394 

 395 

Improvement by personalization 396 

 397 

Completion procedures map a connectome for a given subject to subject-specific virtual and bivirtual dual 398 

connectomes. The question is whether the similarity between empirical and completed connectomes is better 399 

when considering connectome pairs formed by an empirical and its subject-specific dual connectomes, or pairs 400 

made by an empirical and a generic virtual or bivirtual connectome, not specific to the considered subject. We 401 

expect that empirical-to-virtual match is improved by personalization. To quantify it, we introduce an 402 

Improvement by Personalization coefficient ∆Pers, evaluating it for all the types of completion. 403 
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For simulated data one can define CCpersonalized  = CC[Connectomevirt(a subject), Connectomeemp(same subject)], 404 

where “Connectome” refers to the considered connectome matrix (of either the SC or the FC type) and the 405 

ondex “virt” to any type of completion (SLM- or MFM-based, virtual or bivirtual). Analogously, we define 406 

CCgeneric = Group average of CC[Connectomevirt(same subject), Connectomeemp(a different subject)]. The 407 

Improvement by Personalization coefficient is then defined as ∆Pers = (CCpersonalized - CCgeneric) / CCgeneric. This 408 

coefficient significantly larger than zero denotes that completion pipelines get to improved results when 409 

completion is personalized. 410 

At least for Functional Connectivity, we can estimate from empirical data how much the improvement by 411 

personalization could be expected to be in the case in which a first FC extraction for a given subject had to be 412 

replaced by a second one coming from a second scan from the same subject vs a scan for another generic 413 

subject. To obtain such an estimate, we focus on a dataset mediated from the Human Connectome Project and 414 

conceived to probe test/retest variability (Termenon et al., 2016). In this dataset, 100 subjects underwent two 415 

resting state scans, so that two FCemp can be extracted for each of them. If we redefine CCpersonalized = 416 

CC[FCemp(same subject first scan), FCemp(same subject second scan)] and CCgeneric = Group average of 417 

CC[FCemp(same subject, first scan), FCemp(a different subject, first scan)], then we can evaluate an empirical 418 

∆Pers = (CCpersonalized - CCgeneric) / CCgeneric. For empirical FCs from the Termenon et al. (2016) dataset we obtain 419 

an improvement by personalization of ~+22%, to be used as a comparison level when looking at improvements 420 

by personalization in virtual and bivirtual connectomes. 421 

 422 

 423 

Network topology features and their personalized preservation through data completion 424 

To evaluate the correspondence between empirical and bivirtual connectomes we evaluated a variety of 425 

graph-theoretical descriptors of the connectomes and compared them within pairs of empirical and bivirtual dual 426 

adjacency matrices. Every connectome, functional or structural, was described by a weighted undirected matrix 427 

Cij, where i and j are two brain regions, and the matrix entries denote the strength of coupling –anatomical or at 428 

the level of activity correlations– between them. For each brain region i, we then computed: its strength 429 

Si = Σj  Cij, indicating how strongly a given region is connected to its local neighborhood; its clustering 430 

coefficient Clui = |triangles involving i| / |pairs of neighbors of i| (with |⋅| denoting the count of a type of object), 431 

determining how densely connected are between them the neighbors of the considered region; and its centrality 432 

coefficient, quantifying the tendency for paths interconnecting any two nodes in the networks to pass through 433 



 

 16 

the considered node. In particular, we computed here centrality using a version of the PageRank algorithm (Brin 434 

and Page, 1998) for weighted undirected networks in an implementation from the Brain Connectivity Toolbox 435 

(Bullmore & Sporns, 2009), with a typical damping parameter of 0.9. Without entering in the details of the 436 

algorithm (see Brin and Page, 1998 for details), a node is deemed important according to PageRank centrality if 437 

it receives strong links from other important nodes sending selective and parsimonious in their connections, i.e. 438 

sending only a few strong links. Strengths, clustering, and centrality measures provide together a rich and 439 

detailed portrait of complementary aspects of network topology and on how it varies across brain regions. We 440 

computed then the correlations between the above graph theoretical features for matching regions in empirical 441 

connectomes and their bivirtual counterparts. Note that the number of network nodes were different for 442 

connectomes in the ADNI and in the healthy aging datasets, since the used reference parcellations included a 443 

different number of regions in the two cases. However, graph theoretical metrics can be computed in precisely 444 

the same way and we perform in this study uniquely within-dataset analyses. In Figure 8 we show point clouds 445 

for all subjects of the ADNI dataset pooled together. Analogous plots for the healthy aging dataset are shown in 446 

Figure 8-1.  447 

We then computed correlations between vectors of graph-theoretical features over the different brain regions 448 

within specific subjects. This analysis is an important probe of the personalization quality in data completion, 449 

since every subject may have a different spectrum of graph-theoretical properties across the different regions 450 

and that it is important that information about these topological specificities is maintained by completion. These 451 

within-subject correlations –often higher than global population correlations, since not disturbed by variations 452 

of mean feature values across subjects– are summarized in Table 3 for the ADNI dataset and in Table 3-1 for the 453 

healthy aging dataset. In these tables, we provide both absolute correlation values and the indication of how 454 

each correlation is improved by computing it within subjects rather than across the whole sample. Correlations 455 

were evaluated over data points belonging to the interquartile range of empirical data and then extrapolated to 456 

the whole range to avoid estimation to be fully dominated by cloud tails of extreme outliers. 457 

We extracted then the community structure of empirical and bivirtual dual connectomes using the Louvain 458 

algorithm (Blondel et al., 2008), with default parameter Γ = 1 and “negative symmetric” treatment of negative 459 

matrix entries (once again, in the implementation of the Brain Connectivity Toolbox). To compare the resulting 460 

community assignments to different regions across pairs of dual empirical and bivirtual connectomes we 461 

computed the Mutual Information between the respective labelings and normalized it in the unit range by 462 

dividing it by the largest among the entropies of the community labelings of each connectome. Such normalised 463 



 

 17 

mutual information measure is not sensitive to changes in names of the labels and can be applied independently 464 

on the number of retrieved communities. Chance levels for relative mutual information can be estimated by 465 

permuting randomly the labels and finding the 99th percentile of values for shuffled labels. Average Mutual 466 

Information between community labels are tabulated as well in Table 3 for the ADNI dataset and in Table 3-1 467 

for the healthy aging dataset, once again giving absolute values and relative improvements of personalized with 468 

respect to generic correspondence. 469 

 470 

 471 

Supervised subject classification 472 

To show the possibility to extract personalized information relevant for subject characterization, we performed 473 

different machine-learning supervised classification tasks using as input features derived from empirical and 474 

(bi)virtual connectomes. The input and target features to predict were different for the ADNI and the healthy 475 

aging datasets. 476 

Concerning the ADNI dataset, we separated subjects in two subgroups: “controls” and “patients” (“MCI” or 477 

“AD”). Subjects (the actual ones or their associated virtual counterparts) are thus labeled as “positive” when 478 

belonging to the patient subgroup or “negative” otherwise. Note that our classifiers were not sufficiently 479 

powerful to reliably discriminate subjects in three classes (“control”, “MCI” and “AD”) on this dataset, at least 480 

under the simple classification strategies we used. For illustration, we constructed classifiers predicting subject 481 

category from input vectors compiling the total connectivity strengths (in either SC or FC connectomes, real, 482 

virtual, or bivirtual) of different brain regions. The dimension of the input space was thus limited to the number 483 

of regions in the used 96-ROIs parcellation, which is of the same order of the number of available subjects in 484 

the overall dataset. 485 

Concerning the healthy aging dataset, we separated subjects in four age classes with 13 subjects in class I 486 

(age = 18-25), and 12 subjects in classes II (age = 26-39), III (age = 40-57), and IV (age = 58-80) and used as 487 

target labels for classification the ordinal of the specific age class of each subject.  As input vectors we used in 488 

this case the top 10 PCA of upper-triangular of connectome. In both cases, we chose as classifier a boosted 489 

ensemble of 50 shallow decision trees. For the ADNI dataset, we trained it using the RUSBoost algorithm 490 

(Seiffert et al., 2010), particularly adapted to data in which the number of input features is large with respect to 491 

the training dataset size and in which “positive” and “negative” labels are unbalanced. For the healthy aging 492 

dataset, we used a standard  random forest method (Breiman, 2001). For both datasets, for training and testing 493 
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we split the dataset into 5 folds, each of them with a proportion of labels maintained identical to the one of the 494 

full dataset and performed training on three of the five folds and testing on the remaining two folds 495 

(generalization performance). We considered classifiers in which the training features were of the same type of 496 

the testing features (e.g. classifiers trained on SCemp and tested on SCemp data; or classifiers trained on FCMFM 497 

and tested on FCMFM data in Figure 7D-left and 7E-right; etc.). We also considered classifiers in which the type 498 

of data differed in training and testing (e.g. classifiers trained on SCbi-MFM and tested on SCemp data, in Figure 499 

7F). In all cases, generalization performance was assessed on data from different subjects than the ones used for 500 

training (i.e. prediction performed on the folds of data not actually used for training). The split in random folds 501 

was repeated 1000 times, so to be able to evaluate median performances and their confidence intervals, given by 502 

5th and 95th percentile performances over the 1000 repetitions of training and testing. We measured performance 503 

based on confusion matrices between predicted and actual class labels and, just for the binary classification 504 

problem on the ADNI dataset, on the Receiver Operator Curve (ROC) analysis as well. For ROC analysis, we 505 

quantified fractions of true and false positives (numbers of true or false positives over the total number of actual 506 

positives) during generalization, which depend on an arbitrary threshold to be applied to the classifier ensemble 507 

output to decide for positivity of not of the input data. Receiver operator curves (ROC) are generated by 508 

smoothly growing this threshold. An Area Under the Curve (AUC) was then evaluated as a summary 509 

performance indicator, being significantly larger than 50% in the case of performance above chance level. The 510 

ROC curves plotted in Figure 7B and 7C, as well as their associated 95% confidence range of variation are 511 

smoothed using a cubic smoothing spline based on the cloud of TP and FP values at different thresholds over 512 

the 1000 individual training and testing classification runs. We report confidence intervals for AUCs only for 513 

“direct” classifications (pooling performances for classifiers trained on either SCemp or FCemp and tested on 514 

same-type empirical connectomes) and “virtual” classifications (pooling performances for classifiers trained on 515 

any type of virtual or bivirtual connectomes and tested on same nature virtual or empirical connectomes) since 516 

confidence intervals for more specific types of classifiers were largely overlapping.  517 

 518 

Virtual cohorts 519 

To generate virtual cohorts, i.e. synthetic datasets made of a multitude of virtual connectomes beyond 520 

individual subject or patient data completion, we artificially boosted the size of the original dataset by 521 

generating a much larger number of virtual subjects with multiple alternative (but all equally valuable) 522 

completions of the missing connectomic data. Concretely, to generate the virtual cohort dataset illustrated in 523 
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Figure 9A, we took the 88 subjects in the SCemp only plus the 12 subjects in the SCemp + FCemp subsets of the 524 

ADNI dataset (including 21 AD subjects, 35 MCI, and 32 Control subjects) and run for each of them the non-525 

linear SC-to-FC completion algorithm 100 times, using each time a different random seed. The net result was a 526 

group of 100 alternative FCMFM instances for each of the subjects, yielding in total a virtual cohort of 8800 527 

FCMFM matrices to be potentially used for classifier training. Such a cohort can be downloaded as a MATLAB® 528 

workspace within Extended Data FC_cohort.mat (available at the address 529 

https://github.com/FunDyn/VirtualCohorts). To generate Figure 9A, showing a dimensionally reduced 530 

representation of the relative distances between these 8800 virtual matrices, we used an exact t-SNE projection 531 

(Van Der Maaten and Hinton, 2008) of the vectors of upper-triangular parts of the different FCMFM ‘s toward a 532 

two-dimensional space, using a default perplexity value of 30 and no-exaggeration. 533 

On the same t-SNE projection, beyond the FCMFM connectomes within the virtual cohort connectomes we 534 

show as well additional FC connectomes, for the sake of comparison (using the same t-SNE neural network 535 

adopted for projecting the virtual cohort connectomes on the Euclidean plane). Specifically, for the 12 subjects 536 

with available FCemp in addition to SCemp, we also show the projected positions corresponding to the real FCemp. 537 

Moreover, we also show positions of bivirtual FCs generated from the FCemp only subset paired to the 538 

corresponding FCemp projection. 539 

 540 

Code accessibility 541 

 542 

Code/software to perform procedures described in the paper is freely available online at the URL: 543 

https://github.com/FunDyn/VirtualCohorts. The code is available as Extended Data, together with workspaces 544 

including virtual cohorts. Code is designed for MATLAB® and was run on Mac OS 10.15 system.  545 

 546 

 547 

Results 548 

 549 

Connectomic data may have gaps: the example of ADNI 550 

The first dataset we have chosen to focus in the framework of this study corresponds to one of the earliest 551 

and most popular available datasets in AD research, including a substantial amount of structural and functional 552 

connectomic information, i.e. the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database 553 
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(adni.loni.usc.edu). ADNI is impressive for the variety of features it aimed at systematically gathering (Figure 554 

1A). Importantly, based on the T1, DTI and resting-state (rs) BOLD fMRI images available through the ADNI 555 

data-sets, state-of-the-art processing pipelines can be used to extract subject-specific Structural and resting-state 556 

Functional Connectomes, compiled into connectivity matrices adapted to the brain parcellation of choice (Figure 557 

1B, see Materials and Methods for details). 558 

We had access to 244 overall subjects (119 labeled as “MCI” and 51 as “AD”, thus 170 “Patients”, in 559 

addition to 74 control subjects, see Materials and Methods) for which MRI data had been gathered. We could 560 

extract an FC matrix for 168 subjects (starting from rsfMRI) and a SC matrix (starting from DTI) for 88 561 

subjects. However, only for a minority of 12 subjects rsBOLD and DTI information were both available. In a 562 

majority of cases, either DTI or rsBOLD were missing (Figure 1C). This reduced number of “complete” 563 

subjects constitutes a serious challenge to attempts of automatedly categorize them through machine learning or 564 

inference approaches capitalizing on both SC and FC features simultaneously. As a matter of fact, the total 565 

numbers of AD- and MCI-labeled subjects in this complete subset decreased respectively to just 2 and 4, against 566 

6 controls. In these conditions, the development of effective data completion strategies would be an important 567 

asset toward the development of classifier schemes exploiting FC/SC synergies. Therefore, approaches to “fill 568 

gaps” (completion) and, possibly, even artificially boosting sample size (augmentation) are veritably needed. 569 

 570 

Control dataset: healthy aging 571 

To confirm the robustness of all following analyses performed on the first ADNI dataset, we also consider in 572 

the following comparisons with analogous analyses conducted on a second control dataset. In this previously 573 

analysed dataset (Zimmermann et al., 2016; Battaglia et al., 2020), we considered 49 healthy adult subjects 574 

covering an age-span from 18 to 80 years that we split in four age-classes (see Material and Methods for 575 

details). For all these 49 subjects, both FCemp and SCemp are simultaneously available, thus extending the number 576 

of subjects for which a ground truth connectome against which evaluate the performance of each tested 577 

completion pipeline is possible. 578 

We also note that connectomes in the two ADNI and healthy aging datasets were defined in terms of 579 

different brain parcellations, involving a different number of regions. This fact will allow further testing the 580 

robustness of our analyses against changes of the used parcellation. 581 

 582 

 583 
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Linking SC and resting-state FC via computational modeling 584 

As previously mentioned, FC and SC are related only indirectly through the rich non-linear dynamics 585 

supported by brain networks (Ghosh et al., 2008; Deco et al., 2011; Kirst et al., 2016). Mean-field modeling of 586 

large-scale brain networks has emerged initially as the key tool to predict the emergent dynamic patterns of 587 

resting-state FC, from spontaneous dynamics constrained by SC (Ghosh et al., 2008). It is thus natural to 588 

propose the use of model-based solutions to perform data-completion, which, in both the SC-to-FC and FC-to-589 

SC directions, requires to capture the inter-relation between the two as mediated by dynamics. 590 

Large-scale mean-field brain network models are specified by: i) a parcellation of cortical and subcortical 591 

brain areas; ii) a co-registered input SC matrix in the same parcellation; iii) a forward solutions linking source 592 

and sensor space; iv) a neuronal mass model, describing the non-linear dynamics of the regions at each of the 593 

nodes of the SC matrix; v) a choice of a few global parameters (e.g. scale of strength of inter-regional 594 

connectivity or speed of signal propagation along fiber tracts); vi) an external input given to the different 595 

regions, that, in the simplest case, corresponds to simple white noise uncorrelated across each of the different 596 

sites and of homogeneous strength. The Virtual Brain enables the complete workflow from brain images to 597 

simulation (TVB; Sanz-Leon et al., 2013, 2015). Personalization is accomplished by the subject-specific 598 

structural skeleton –ingredients (i) through (iv)–, which has been demonstrated to be individually predictive 599 

(Proix et al 2017; Melozzi et al 2019). Simulations of the model can be run to generate surrogate BOLD time-600 

series of arbitrary length (see Materials and Methods for details) and the associated simulated resting-state FC, 601 

time-averaged (static FC) or even time-resolved (FC dynamics or dFC, Hansen et al., 2015). The thus obtained 602 

simulated FC will depend on the chosen global parameters, setting the dynamic working point of the model. The 603 

model dynamics will eventually switch between alternative dynamical regimes when its global control 604 

parameters cross specific critical points. Tuning global parameters will thus uniquely determine, in which 605 

regime the model operates. Mean-field large scale models constrained by empirical SC tend to generate 606 

simulated resting-state FC that best matches empirical observations when the dynamic working point of the 607 

model lies in the proximity of a model’s critical point (Deco et al., 2011; Deco et al., 2013; Hansen et al., 2015; 608 

Triebkorn et al., 2020).  609 

We here chose one of the simplest possible whole-brain network model designs, which emphasizes activity-610 

based network organization (as opposed to reorganization due to synchronization) and thus ignores inter-611 

regional propagation delays. This approach is frequently used in the literature (e.g., Deco et al., 2013; Hansen et 612 

al., 2015; Aerts et al., 2018) and has the advantage of avoiding the need for complex delay differential equation 613 
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integration schemes (see Discussion for more details). Activation-based approaches adopt particularly simple 614 

neural mass models such as the reduced Wong-Wang model (Deco et al., 2013), in which the dynamics of an 615 

isolated brain region is approximated by either one of two possible steady states, one “down state” at low firing 616 

rate and an “up state” at high firing rate, a feature initially meant to mimic bi-stability in working memory or 617 

decision making (Wong & Wang, 2006). By varying G the model will switch from a low-coupling regime, in 618 

which all regional activations are low to a high-coupling regime, in which all regional activations are high, 619 

passing through an intermediate range, in which both regimes can exist in a multistable manner and regions 620 

display spatially and temporally heterogeneous activations (a changing mix of high and low firing rates). The 621 

best fit between simulated and empirical FC occurs slightly before the critical rate instability, at which modes of 622 

activity with low firing rate disappear (Deco et al., 2013). 623 

As alternatives to the just described non-linear mean-field models (MFMs) of resting-state brain dynamics, 624 

simpler stochastic linear models (SLMs) have also been considered (Goñi et al., 2014; Messé et al., 2014; 625 

Saggio et al., 2016).  In these models, the activity of each region is modeled as a stochastic process (linear, in 626 

contrast to the non-linear neural mass dynamics of conventional MFMs), biased by the fluctuations of the other 627 

regions weighted by the SC connectome (see Materials and Methods). SLMs have also two different regimes. In 628 

the first regime, the activities of all regions converge to a fixed-point of constant mean fluctuating activities, 629 

while, in the second, regional activities diverge with exponential growth. Once again, the best fit between the 630 

simulated and the empirical resting-state FCs is observed when tuning the model parameters slightly below the 631 

critical point (Hansen et al., 2015; Saggio et al., 2016). 632 

MFMs and SLMs provide thus two natural ways to generate simulated resting-state FCs, depending on the 633 

chosen dynamic regime, starting from a selected SC. Strategies have also been devised to approximately solve 634 

the inverse problem of determining which SC matrix should be used as input to a model in order to give rise to a 635 

simulated FC matching a specific, pre-determined target matrix. For the SLM, a simple analytic solution to the 636 

inverse problem exists (Saggio et al., 2016). For MFMs, inverse problems have not been studied with the same 637 

level of rigor, but algorithms have been introduced that iteratively adjust the weights of the SC matrix currently 638 

embedded in the model to improve the fit between simulated and target FCs (Gilson et al., 2016; 2018). We will 639 

show later that these algorithms, although initially designed to identify changes of “effective connectivity” 640 

occurring between resting state and task conditions, have the potential to cope with the actual problem of MFM 641 

inversion, providing reasonably good ansatz for SC inference. 642 
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As linear approaches are significantly faster than non-linear approaches, it is important to study their 643 

performance alongside nonlinear approaches to confirm the actual justification of the use of more complicated 644 

algorithms. We will see that for one of the two considered datasets, the ADNI one, non-linear methods are 645 

superior for the data completion applications we are interested in. However, performance of completion 646 

happened to be slightly superior for the SLM-based than for the MFM-based methods in the case of the second 647 

healthy aging dataset (hence the interest of exploring and benchmarking both linear and nonlinear completion 648 

strategies). 649 

 650 

 651 

Model-driven data completion 652 

Figure 2 summarizes many of the modeling operations described in the previous section framing them in the 653 

specific context of connectomic data completion. MRI data can be used to generate empirical SC matrices SCemp 654 

(from DTI) or FCemp (from rs fMRI BOLD). By embedding the empirical matrix SCemp into a non-linear MFM 655 

or a linear SLM, it is possible to compute surrogate FC matrices (Figure 2A, upward arrows), denoted, 656 

respectively, FCMFM and FCSLM. The MFM and SLM global parameters are suitably tuned (slightly subcritical) 657 

then FCMFM and FCSLM will be maximally similar to the empirical FCemp (dynamic working point tuning, 658 

represented by dashed grey arrows in Figure 2A). Starting from the empirical matrix FCemp, one can then infer 659 

surrogate SC matrices (Figure 2A, downward arrows), either by using a linear theory –developed by Saggio et 660 

al. (2016)– to compute a surrogate SCSLM; or by exploiting non-linear effective connectivity algorithm –661 

generalized from Gilson et al. (2016; 2018)– to infer a surrogate SCMFM starting from a random initial guess (see 662 

later section). 663 

When connectomic data are incomplete (only SCemp or only FCemp are available, but not both 664 

simultaneously), computational simulation or inference procedures can be used to fill these gaps: by using 665 

FCMFM or FCSLM as virtual replacements for a missing FCemp (Figure 2B); or by using SCMFM or SCSLM as virtual 666 

replacements for a missing SCemp (Figure 2C). The quality of the model-generated virtual SCs and FCs can be 667 

assessed by comparing them with the actual empirical counterparts for the small subset of subjects for which 668 

both SCemp and FCemp are simultaneously available. Optimizing the quality of the virtually completed matrices 669 

on subjects for which both empirical connectomes are available (as, e.g. the subset of ADNI “SCemp+FCemp” 670 

subjects), also allows extrapolating target criteria for identifying when the model is operating a suitable dynamic 671 

working point, that can be evaluated solely based on simulated dynamics when a fitting target matrix is missing 672 
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and thus fitting quality cannot be explicitly measured (cf. Figures 3 and 4). We can thus translate these criteria 673 

into precise algorithmic procedures that inform linear or non-linear SC-to-FC and FC-to-SC completion (see 674 

Tables 1, 2 and 1-1, 2-1). 675 

We now, provide more details on implementation and performance for each of the four mentioned types of 676 

data completion. 677 

 678 

Linear SC-to-FC completion 679 

In linear SC-to-FC completion, a simple SLM (see Materials and Methods) is constructed based on the 680 

available SCemp and its direct simulations or even, in a much faster manner, analytical formulas deriving from 681 

the model’s theory are used to generate the associated virtual Pearson correlation matrix FCSLM (Extended Data 682 

Figure 3-1). In this stochastic linear modeling scheme, once the driving noise strength is arbitrarily chosen and 683 

fixed and the input connectome SCemp is specified, there remains a single parameter to adjust, the global scale of 684 

long-range connectivity strength G. Extended Data Figure 3-1A shows a systematic exploration, performed on 685 

subjects from the ADNI “SCemp+FCemp” subset, of how the completion quality depends on tuning this parameter 686 

G. As shown by the main plot in Extended Data Figure 3-1A for a representative subject, increasing G the 687 

correlation between the empirical FCemp and the simulated FCSLM, derived here from direct SLM simulations, 688 

initially grows to peak in proximity of a critical value G*. The correlation then drops dramatically when further 689 

increasing G beyond the critical point G*. 690 

The exact value of G* depends on the specific personalized SCemp connectome embedded into the SLM and 691 

is therefore different for each subject. The small boxplot inset in Extended Data Figure 3-1A gives the 692 

distribution of the personalized G* over all the subjects in the ADNI “SCemp+FCemp” subset. However, when 693 

performing linear FC completion because BOLD data and FCemp are missing, the exact location of the fitting 694 

optimum cannot be determined. To perform linear SC-to-FC completion for the ADNI subjects with missing 695 

BOLD we chose to always use a common prescribed value G*ref = 0.83, set to be equal to the median of the 696 

personalized G* over the “SCemp+FCemp” subset of ADNI subjects. 697 

Once a G*ref value and a noise strength are set, the linear completion can be further sped-up by the fact that 698 

the covariance matrix FCSLM for these frozen parameters can be analytically evaluated, as discussed in Saggio et 699 

al. (2016). Therefore, one can directly apply the SLM analytical formulas (see Material and Methods) on the 700 

available SCemp as input, without the need for performing direct simulations to generate surrogate BOLD first.  701 

Extended Data Figures 3-1B-C analyze the expected performance of this “simulation-less” procedure, as 702 
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benchmarked by applying it on the ADNI “SCemp+FCemp” subset. The boxplot in 3-1B (leftmost box) reports a 703 

median Pearson correlation between the linear virtual FCSLM and the actual empirical FCemp close to ~0.24 for 704 

the ADNI dataset. This correlation is larger and rise to ~0.37 for the healthy aging dataset, in which FCSLM are 705 

generated from SCemp using precisely the same algorithm. Panel 3-1C indicates then the percent loss in 706 

correlation that has been caused by using the common value G*ref and the analytical formula to evaluate the 707 

linear virtual FCSLM rather than direct simulations at the actual personalized optimum G* for each of the ADNI 708 

“SCemp+FCemp” subjects. The median quality loss is approximately 0.5%, indicating that the lack of personalized 709 

tuning of the SLM working point is only a minor issue and that is acceptable to speed-up completion by relying 710 

on analytical evaluations.  711 

Table 1-1 provides a pseudo-code for the linear SC-to-FC completion procedure (see Materials and Methods 712 

for all details). Linear SC-to-FC completions for the DTI-only subjects in the considered ADNI dataset and the 713 

Healthy Ageing dataset can be downloaded as part of Extended Data FC_SLM.  714 

The median Pearson correlations of ~0.24 or ~0.37 between the linear virtual FCSLM and the actual empirical 715 

FCemp for the ADNI and the healthy aging datasets respectively are significant but still absolutely weak. A way 716 

to assess whether linear SC-to-FC completion is worthy, despite these low correlation values, it is possible to 717 

compare the achieved reconstruction quality with the one that one could trivially achieve by simply taking the 718 

SCemp connectome itself as surrogate FC, since we know that SC and FC connectomes are already strongly 719 

related (Hagmann et al., 2008). This strategy of using the “other connectome” to perform FC completion would 720 

be even faster than SLM-based completion.  We thus computed the percent improvement in rendering FCemp via 721 

FCSLM for subjects in the ADNI “SCemp+FCemp” subset and for subjects in the healthy aging datasets. As shown 722 

in Extended Data Figure 2-1A, for the ADNI dataset, the use of FCSLM resulted systematically in a worse 723 

performance (median drop ∆୲୰୧୴୧ୟ୪= -15%, see Materials and Methods for definition) in reproducing the actual 724 

FCemp than using the other available connectome SCemp. However, in the case of the healthy aging dataset, the 725 

use of FCSLM resulted in a clearly better performance than when using “the other connectome” (median 726 

improvement ∆୲୰୧୴୧ୟ୪= +40%). Thus, the performance of linear SC-to-FC completion can be good but was not 727 

robustly maintained across the two considered datasets. 728 

 729 

Non-linear SC-to-FC completion 730 

In non-linear SC-to-FC completion, a more complex MFM (see Materials and Methods) is constructed 731 

based on the available SCemp and is simulated to generate surrogate BOLD data and the associated Pearson 732 
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correlation matrix FCMFM (Figure 3). Non-linear mechanistic MFM models are supposedly more compliant with 733 

neurophysiology than the phenomenological SLMs. Furthermore, because of their non-linearities, they are 734 

potentially able to capture complex emergent collective dynamics resulting in non-trivial dFC (which SLMs 735 

cannot render, cf. Hansen et al., 2015). However, MFMs have also more parameters and are computationally 736 

costlier to simulate than SLMs. 737 

We chose here to limit ourselves to MFMs based on a reduced Wong-Wang regional dynamics (see 738 

Materials and Methods for model equations), which has previously been used to successfully reproduce rsFC 739 

(Deco et al., 2013) and dFC (Hansen et al., 2015) starting from empirical SC, despite its relative simplicity with 740 

respect to other possible neural masses implemented in the TVB platform. In addition to the global scale of 741 

long-range connectivity strength G, the MFM model dynamics depend also on regional dynamics parameters. In 742 

Figure 3, we froze all local parameters but the NMDA decay time-constant τ, since they affected the dynamic 743 

behavior of the model less than the other control parameters and, in particular, did not alter qualitatively the 744 

repertoire of accessible dynamical regimes (compare Figure 3A with Extended Data Figure 3-2). The simulated 745 

collective dynamics and the resulting non-linear virtual FCMFM will depend on the choice of the free control 746 

parameters G and τ. In Figure 3A, we have explored the dependency of the correlation between FCMFM and the 747 

actual empirical FCemp as a function of G and τ achievable over the subjects in the ADNI “SCemp+FCemp” subset. 748 

As evident in Figure 3A, this dependence is non-monotonic and the best-fitting qualities are concentrated in a 749 

narrow concave stripe across the G/τ plane. Panels 3B and 3C report zoom of Figure 3A into increasingly 750 

smaller regions, revealing an extended zone of high fitting quality which some absolute optimum parameters G* 751 

and τ* (here G* = ~ 1.5 and τ* = 25). 752 

Remarkably, this best-fitting quality zone on the G/τ plane is associated as well to other properties that can 753 

be evaluated just based on the simulated dynamics (and, therefore even when the actual target FCemp is unknown 754 

and missing). We found that the best fit quality systematically occurs in a region where three criteria are jointly 755 

met (Figures 3D-F).  756 

First, there is a mixture of “ignited” regions with large activation and of not yet ignited regions with a 757 

weaker firing rate (spatial heterogeneity, Figure 3D). Conversely, when moving out of the best-fitting zone, the 758 

activity becomes more spatially homogeneous, either with all regions stable at low (for G <<< G*) or high (for 759 

G >>> G*) firing rates. 760 
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Second, the time-averaged FCMFM has a complex modular organization between order and disorder, 761 

associated to high average clustering coefficient, in contrast with the absence of clustering observed for 762 

G <<< G* or G >>> G* (structured FC, Figure 3E). 763 

Third, the simulated collective dynamics give rise to meta-stability of FC along time, i.e. to a non-trivially 764 

structured dFC, which alternates between “knots” of transiently slowed-down FC network reconfiguration and 765 

“leaps” of accelerated reconfigurations. Such non-triviality of dFC can be detected by the inspection of the so-766 

called dFC matrix (Hansen et al., 2015; Arbabyazd et al., 2020; Battaglia et al., 2020; Lombardo et al., 2020), 767 

representing the similarity between FC matrices computed at different time-windows (see Materials and 768 

Methods). In this dFC matrix analysis, dFC “knots” are visualized as blocks with high inter-FC correlations, 769 

while dFC “leaps” give rise to stripes of low inter-FC correlation. The prominence of the block structure of the 770 

dFC matrix can be measured by the dFC clustering coefficient (see Material and Methods), higher when the 771 

dFC matrix includes more evident knots. The dFC clustering coefficient is higher in the best fit zone, while it 772 

drops moving outside it toward G <<< G* or G >>> G* (structured dFC, Figure 3F). 773 

By scanning the G/τ plane in search of a zone with simultaneous spatial heterogeneity of activations, 774 

structured FC and structured dFC, the MFM model parameters can be tuned to bring it in a zone invariantly 775 

resulting in relatively higher fitting quality. Figure 3G shows the analysis of the expected performance of this 776 

procedure, as benchmarked by applying it on the ADNI “SCemp+FCemp” subset (on the left) and the healthy 777 

aging dataset (on the right). We measured a median Pearson correlation between the non-linear virtual FCMFM 778 

and the actual empirical FCemp close to ~0.32 for both datasets, which is larger than for FCSLM in the case of the 779 

ADNI but slightly maller in the case of healthy aging datasets. 780 

Table 1 provides a compact pseudo-code for the non-linear SC-to-FC completion procedure (see Materials 781 

and Methods for all details). Non-linear SC-to-FC completions for the DTI-only subjects in the considered 782 

ADNI dataset can be downloaded as part of Extended Data FC_MFM. 783 

The value of correlation with FCemp achieved by FCMFM can thus be larger than the one achieved by FCSLM 784 

and also appear more robust, since attained in both datasets. Nevertheless, it remains necessary to check, as 785 

previously for the FCSLM, that it constitutes an improvement on the trivial strategy over taking the “other 786 

connectome” as substitute (i.e. taking FC to be identical to SCemp). In Extended Data Figure 2-1A, we show that 787 

this is indeed the case, unlike for linear SC-to-FC completion. The procedure sketched in Table 1-1 led to a 788 

median improvement on using the “other connectome” approaching ~20% for both datasets that can go as high 789 

as +60% in some subjects.  790 
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 791 

 792 

Linear FC-to-SC completion 793 

In linear FC-to-SC completion, we use once again the analytic theory derived for the SLM (Saggio et al., 794 

2016) to deterministically compute a surrogate SCSLM as a function of the available FCemp or, more precisely, of 795 

the resting-state BOLDemp time-series used to derive FCemp. In this scheme, the linear virtual SCSLM is indeed 796 

taken to be directly proportional to the inverse covariance of the BOLD time-series (see Materials and 797 

Methods). The proportionality constant would depend on the free parameters chosen for the SLM, serving as a 798 

link between FC and SC. Here we set arbitrarily this constant to the unit value. 799 

Extended Data Figure 4-1 shows the analysis of the expected performance of this procedure, as 800 

benchmarked by applying it on the ADNI “SCemp+FCemp” subset. For this ADNI dataset, we measured a median 801 

Pearson correlation between the linear virtual SCSLM and the actual empirical SCemp close to ~0.22. On the 802 

healthy aging dataset, this correlation rose even up to ~0.42. 803 

Table 2-1 provides a pseudo-code for the linear FC-to-SC completion procedure (see Materials and Methods 804 

for all details). Linear FC-to-SC completions for the BOLD-only subjects in the considered ADNI  and the 805 

Healthy Ageing datasets can be downloaded as part of Extended Data SC_SLM. 806 

As for SC-to-FC completions, we confirmed if the performance reached by linear FC-to-SC completion is 807 

superior to the one that is obtainable through the trivial strategy of using “the other connectome” (in this case, 808 

the available FCemp). In Extended Data Figure 2-1B, we show that using SCSLM rather than FCemp as an ersatz for 809 

SCemp leads to drops of improvements in quality with a pattern similar to the reverse SC-to-FC completion, i.e. a 810 

drop in quality, with a median value of approximately -20%, for the ADNI dataset but an increase of nearly 811 

~50% for the healthy aging dataset. Once again, thus, linear FC-to-SC completion can yield good results, but 812 

this performance did not robustly generalize through datasets.  813 

 814 

 815 

 816 

Non-linear FC-to-SC completion 817 

Non-linear FC-to-SC completion consists in the inference of a SCMFM matrix that, used as input to an MFM, 818 

produces as output a simulated FC* matrix highly correlated with the available empirical FCemp (Figure 4).  This 819 

non-linear inverse problem is more sophisticated than linear FC-to-SC completion, because, for the MFM a 820 
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theory providing an explicit formal link between input structural connectome (SC*) and output functional 821 

connectome (FC*) is not available, unlike for the SLM. Note indeed that MFMs, at the best-fitting dynamic 822 

working point, give rise not just to a single dynamical mode, but to a multiplicity of them (Deco & Jirsa 2012; 823 

Hansen et al., 2015; Golos et al., 2015) and that each of them may be associated, in general, to a different state-824 

specific FC (Battaglia et al., 2012; Hansen et al., 2015; Kirst et al., 2016) so that the final static FC* results from 825 

averaging over a mixture of different states sampled in stochastic proportions. Therefore, to derive the FC* 826 

associated with a given input SC*, it is necessary to run explicit MFM simulations, long enough to sample a 827 

variety of possible dynamical states. 828 

Gilson et al. (2016; 2018) have introduced iterative optimization procedures aiming at updating a current 829 

guess for the input SC* to a model in order to improve the match between the model output FC* and a target 830 

FCemp. They initially conceived such a procedure as a form of “effective connectivity” analysis, aiming at 831 

constructing models which capture the origin of subtle changes between resting state and task conditions. Thus, 832 

starting from an empirical SC connectivity and from a model reproducing suitably rest FC, they slightly 833 

adjusted SC weights through an iterative procedure to morph simulated FC in the direction of specific task-834 

based FCs. Nothing however prevents to use the same algorithm in a more radical way, to grow from purely 835 

random initial conditions a suitable effective connectome, as an ersatz of missing SCemp, compatible with the 836 

observed FCemp. 837 

In this “effective connectivity” procedure connectome weights are iteratively and selectively adjusted as a 838 

function of the difference occurring between the current FC* and the target FCemp. Such optimization leads to 839 

infer refined connectomes, that, with respect to empirical DTI SC matrix, may display non-symmetric 840 

connections (distinguishing thus between “feeder” and “receiver” regions as in Gilson et al., 2016) or enhanced 841 

inter-hemispheric connections, usually under-estimated by DTI (as in Gilson et al., 2018). Here we use a similar 842 

algorithm to learn a suitable non-linear virtual SCMFM. 843 

The initial SC*(0) is taken to be a matrix with fully random entries. An MFM embedding such SC*(0) is built 844 

and simulations are run to generate an output FC*(0) which is compared to the target FCemp of the subject for 845 

which FC-to-SC completion must be performed. The used SC*(0) is then modified into a different 846 

SC*(1) = SC*(0) + ∆FC(0) matrix, by performing a small update step in the direction of the gradient defined by 847 

the difference ∆FC(0) = FCemp - FC*(0). A new simulation is then run to produce a new FC(1). The produce is 848 

repeated generating new SC(i) = SC(i-1) + ∆FC(i-1) until when the difference between FC(i) and the target FCemp 849 



 

 30 

becomes smaller than a specified tolerance, i.e. |∆FC(i)| < ε. The last generation SC(i) is then taken as non-linear 850 

virtual surrogate SCMFM (see Materials and Methods for details). 851 

Figure 4A provides an illustration of the nonlinear FC-to-SC completion when applied to subjects in the 852 

ADNI ADNI “SCemp+FCemp” subset. In the first step, the matrix SC*(0) is random and there is no correlation 853 

between the output FC*(0) and FCemp. Advancing through the iterations, SC*(k) develops gradually more complex 854 

internal structures and correspondingly, the correlation between FC*(k) and FCemp increases until when it reaches 855 

the desired quality threshold, here set to CCtarget = 0.7. This threshold quality is usually reached after ~1500 856 

iterations. In the ADNI “SCemp+FCemp” subset we take advantage of the availability of the actual SCemp to 857 

quantify as well the convergence of SC*(k) toward SCemp. Figure 4A shows that advancing through the iterations, 858 

the correlation between SC*(k) and SCemp improves, in agreement with our hypothesis that effective connectivity 859 

can provide a reasonable replacement for structural connectivity. The expected quality of reconstruction, as 860 

estimated from results on the ADNI “SCemp+FCemp” subset is reported in Figure 4B and amounts to an expected 861 

correlation between SCMFM and SCemp of ~0.31. For the healthy aging dataset, we obtain a slightly smaller 862 

median value of ~0.28, but the difference is not statistically significant. 863 

Table 2 provides a compact pseudo-code for the non-linear FC-to-SC completion procedure (see Materials 864 

and Methods for all details). Non-linear FC-to-SC completions for the BOLD-only subjects in the considered 865 

ADNI dataset can be downloaded as part of Extended Data SC_MFM.   866 

As for SC-to-FC completion, we then confirmed if the nonlinear FC-to-SC completion SCMFM does provide a 867 

superior reconstruction of SCemp than the trivial alternative offered by just taking the “other connectome” (the 868 

available FCemp). As shown in Figure 2-1B, the use of nonlinear FC-to-SC completion led to a median 869 

improvement on the order of ~15% for the ADNI dataset and of ~10% for the healthy aging dataset. If the 870 

improvement achieved by non-linear completion is smaller than for linear completion in the healthy aging 871 

dataset, nonlinear FC-to-SC completions succeeds in the ADNI dataset where its linear counterpart failed. 872 

Therefore, nonlinear FC-to-SC computational generation provides a worthy strategy for data completion, 873 

although not yet as efficient as SC-to-FC completion. 874 

We note that non-linear FC-to-SC completion, as for non-linear SC-to-FC completion, is a non- 875 

deterministic procedure, meaning that a different SCMFM is generated depending on the starting initial condition 876 

SC*(0). However, the different non-linear virtual surrogates lie at distances from the common actual ground truth 877 

SCemp which are tightly concentrated around the median correlation. As revealed by Figure 4C, the reported 878 

correlations between SCMFM and SCemp were within a narrow interval of ±2.5% of the relative difference from 879 
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the median distance for all the tested random initial conditions (30 per subject, see Materials and Methods), 880 

showing that the expected performance is poorly affected by the initial conditions. This stochastic aspect of the 881 

non-linear completion algorithm is going to allow us to generate not just one but arbitrarily many completions, 882 

starting from each available empirical connectivity matrix (see later section). 883 

 884 

Virtual and bi-virtual duals 885 

SLMs and MFMs have thus the capacity to bridge from SC to FC or from FC to SC in a way that, in most 886 

cases, goes beyond capturing the mere similarity between the empirical SCemp and FCemp connectomes. When 887 

using these models for data completion, the input matrix is always an empirical matrix (SCemp or FCemp) and the 888 

output a surrogate virtual matrix (respectively, FCvirt or SCvirt, where the index “virt” refers generally to any 889 

completion algorithm, i.e. either using the SLM or the MFM models). However, the algorithms presented in 890 

Tables 1, 2 and 1-1, 2-1 can still be applied even when the input connectivity matrix is already a virtual matrix. 891 

In this case, the input could be surrogate matrices (SCvirt or FCvirt) from data completion and the output would be 892 

bi-virtual (respectively, FCbivirt or SCbivirt), i.e. twice virtual, since, to obtain them starting from an empirical 893 

input connectome, two different model-based procedures have to be chained. The final result of passing an 894 

original empirical connectome through two chained completion procedures is then a bi-virtual surrogate matrix 895 

of the same type (structural or functional) of the initially fed connectome. In other words, SCemp is mapped to a 896 

SCbivirt (passing through an intermediate FCvirt step) and FCemp is mapped to an FCbivirt (passing through an 897 

intermediate SCvirt step). If the information loss is not too high, pairs of virtual and bivirtual SC and FC 898 

connectomes should be shared instead of pairs involving empirical connectomes, potentially reducing 899 

difficulties to disclosing in public personal clinical data (see Discussion). 900 

The virtual and bivirtual matrices obtained by operations of data-completion can be seen as a set of 901 

connectomes dual to the original real connectome. In mathematics, one often speaks of “duality” relations when 902 

two alternative spaces are put into relation by an element-to-element structure-preserving mapping. Here, one 903 

could reinterpret our algorithmic procedures for SC-to-FC or FC-to-SC completion as mapping between 904 

alternative “spaces” in which to describe the inter-relations between the connectomes of different subjects. 905 

Although our definition of duality is not as rigorous as in more mathematical contexts (as in the case, e.g., of 906 

linear algebra dual or bidual spaces; or in graph theory, where duality refers to node-to-link transformations), we 907 

will see that dissimilarities or similarities between the personalized connectomes of different subjects are 908 

substantially preserved by the application of completion procedure that maps an original space of empirical 909 
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connectomes into a dual space of virtual connectomes. In other way, the information carried by a set of 910 

connectomes and by the set of their dual counterparts is, at least in part, equivalent (cf. Figures 5, 6, 7, Table 3 911 

and Discussion).  In this view, the first “dualization” operation would map a real connectome to a virtual 912 

connectome of a different type (a virtual dual, swapping SC with FC). The second dualization would then map 913 

it to a bivirtual dual of the same type (mapping SC to SC and FC to FC; cf. Figure 5A-B left cartoons and 7A). 914 

If the completion quality is good, then empirical connectomes and their bi-virtual duals should be highly related 915 

between them. Before, discussing more in detail the crucial issue of the preservation or loss of personalized 916 

information in duals, we start here by performing a self-consistency check of the data completion procedures 917 

and compare thus the start (FCemp or SCemp) and the end (FCbivirt or SCbivirt) points of dualization chains. 918 

Figure 5 shows the correspondence between empirical and bi-virtual SC and FC pairs, both when using 919 

SLM- and MFM-based procedures. We first evaluated the quality of SCbivirt generation, over the ADNI-subset of 920 

88 subjects for which a SCemp matrix was available and over the healthy aging dataset (Figure 5A). Considering 921 

the nonlinear bi-virtual completion chain SCemp to FCMFM to SCbi-MFM we obtained a median correlation between 922 

SCemp and SCbi-MFM of ~0.58 for ADNI dataset and ~0.64 for the healthy ageing dataset. This quality of 923 

rendering aligned well with the performance of the linear bi-virtual completion with a correlation between SCemp 924 

and SCbi-SLM of ~0.63 for the ADNI dataset. On the healthy aging dataset, linear bivirtual duals SCbi-SLM were of 925 

exceptionally high quality, reaching a correlation with SCemp nearly as high as ~0.92. 926 

We then evaluated the quality of FCbivirt generation over the ADNI-subset of 168 subjects for which an FCemp 927 

matrix was available and over the healthy aging dataset (Figure 5B). Considering the non-linear bi-virtual 928 

completion chain FCemp to SCMFM to FCbi-MFM the median correlation between FCemp and FCbi-MFM was of ~0.59 929 

for the ADNI dataset and of ~0.45 for the healthy aging dataset. Moving to linear bivirtual FCbi-SLM, the 930 

performance on the healthy aging dataset was of ~0.42, equivalent to the non-linear duals. However, linear 931 

bivirtual dualization failed for the ADNI dataset, with a correlation dropping to ~0.12, not surprisingly given the 932 

poor quality of already the first step from FCemp to SCMFM. Even in this latter case, nevertheless, the empirical-to-933 

bi-virtual correlations remained significant.  934 

 935 

Are dual connectomes still personalized? 936 

Although significant, correlations between virtual and bivirtual with matching empirical connectomes can be 937 

small. Is this average performance sufficient not to lose subject-specific information through the various steps of 938 

transformation? The most straightforward way to answer to this question is to check whether FC(bi)virt or SC(bi)virt 939 
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connectomes are closer to the FCemp or SCemp of the same subject from which they derive than to the ones of 940 

other generic subjects. Since SCs and FCs are related but not identical and their divergence can be stronger or 941 

weaker depending on the subjects (Zimmermann et al., 2019) the answer to this question is not obvious and 942 

must be checked. 943 

We therefore introduced a measure of the improvement in connectome matching obtained by using 944 

personalized virtual and bivirtual duals rather than generic connectomes. The coefficient ∆Pers (see Materials and 945 

Methods) quantifying the percent improvement obtained by using personalized connectomes are tabulated in 946 

Table 5 for the different types of completion. 947 

 948 

Improvements by personalization were always positive, indicating that on average some subject-specific 949 

information is preserved. These numbers, however, are diverse between datasets and completion types. 950 

Furthermore, they should be compared with the uncertainty itself existing on empirical connectomes. Indeed the 951 

∆Pers analysis implicitly assume that empirical connectomes are exact reference comparison terms. In reality, 952 

there is a strong uncertainty on empirical connectome themselves, with an elevated test-retest variability within 953 

individual subjects (Wang et al., 2012; Chen et al., 2015; Termenon et al., 2016). In particular, the connectomic 954 

dataset released together with the study by Termenon et al. (2016) allows an evaluation of what would be the 955 

expected “empirical personalization improvement” in the case in which we actually had to compare two 956 

connectomes obtained empirically for a same subject and assess how more similar are they between them, than 957 

to a connectome of the same type but obtained from a different subject. Termenon et al. (2016) considers data 958 

mediated from the Human Connectome Project and provides for 100 subjects two different FCemp matrices 959 

deriving from different scans. Using a definition of the ∆Pers coefficient analogous to the one used for virtual and 960 

bivirtual completions but adapted to these test-retest empirical dataset, one can estimate a value of ∆Pers of about 961 

~+22% for empirical FCs. In other words, the similarity between two FCemp from a same subject is expected to 962 

be only a 22% larger than similarity with FCemp from different subjects. We do not dispose of an analogous 963 

estimation for SCemp connectomes, however we expect personalization improvements to be even in this case 964 

comparable in value, if not smaller, given that inter-subject variability for SCemp connectomes tend to be smaller 965 

than for FCemp (Zimmermann et al., 2019).  966 

The ∆Pers registered for bivirtual dual connectomes are of the same order of magnitude than this empirical 967 

expectancy allowing us to conclude that they are “personalized” at least as much as empirical connectomes (and 968 

at least according to this rough ∆Pers measure). In some cases, notably for nonlinear bivirtual FC duals, the 969 



 

 34 

similarity with the original empirical connectome is way larger than what expected for empirical test-retest 970 

scans, probably due to the fact, that the effective connectivity algorithm used for FCemp to SCMFM nonlinear 971 

completion emphasize similarities between SC and FC, thus allowing FCbi-MFM to more faithfully mirror FCemp 972 

without being fully identical to it (average correlation between FCbi-MFM and FCemp is of ~0.4-0.6, cf. Figure 5B). 973 

Remarkably, this strong preservation of personalization by bivirtual duals is achieved despite smaller relative 974 

improvements by personalization at the first step of the dualization chain, e.g. the transition from empirical to 975 

simple virtual duals. This means that the variability generated in the simulation leading to virtual duals, 976 

although large must maintain important subject-specific features useful to regenerate a good personalization at 977 

the following stage of generating the bivirtual dual. This also means that the ∆Pers measure could be a too rough 978 

and not sensitive enough metric of personalization, since it weights equally any difference or similarity in the 979 

connectomes, independently from their relevance. Better, complementary measures of personalization are thus 980 

needed. 981 

Since individual connectomes are affected by a necessary uncertainty a more reliable measure of the quality 982 

of personalization can be achieved by looking at the capacity of dualization to preserve overall preservation of 983 

inter-subject relations rather than specific individual data-points. Indeed, individual connectomes could be 984 

distorted through the mapping into dual virtual and bivirtual spaces, but if the distortion is such to maintain the 985 

subject’s connectome close to other subjects’ connectome to which it was close and far from other subjects’s 986 

connectome from which it was far, then the possibility to discriminate subject categories based on connectome 987 

features could still be preserved. Therefore, we computed the distances between the empirical connectomes 988 

SCemp (or FCemp) of different subjects and the inter-subject distances for corresponding pairs of subjects but, this 989 

time, between their bivirtual dual connectomes SCbi-virt (or FCbi-virt). As shown in Figure 6 and Extended Data 990 

Table 5-1, the correlation between the inter-subject distances in real and bidual spaces were noticeable and 991 

significant, for both ADNI and healthy aging datasets and for both MFM- and SLM-based approaches (Table 5-992 

1), apart from the very poor performance of bivirtual linear FC completion in the ADNI (expected, given 993 

previously reported failures in this case). We also noticed that distances between bivirtual duals were often 994 

amplified, with respect to the original empirical distances. The space of dual bivirtual connectomes can thus be 995 

considered as a “virtual mirror” of the real connectome space, reproducing to a reasonable extent despite some 996 

deformation of the geometry of the original distribution of subjects. 997 

 998 

Subject classification based on real and virtual connectomes 999 
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The compilation of large datasets, including connectivity data from structural and functional neuroimaging is 1000 

considered essential for the development of algorithmic patient stratification and predictive approaches. Here, 1001 

we have described approaches for connectomic data completion and studied their consistency. We now show 1002 

that such completion procedures are also compliant, in perspective, with the extraction via machine learning 1003 

algorithms of the personalized information preserved in duals. 1004 

As a first proof-of-concept, we studied here two simple (and academic) supervised classification problems in 1005 

which subjects are separated into different classes based on connectomic features –empirical and/or virtual– 1006 

used as input. First, in the ADNI dataset, we try separating subjects into two subgroups of control and patients 1007 

(i.e., MCI or AD) subjects. Second, in the healthy aging dataset, we separate subjects into four classes of age, 1008 

from the youngest to the oldest. Importantly, input features can be computed from all different types of 1009 

connectomes: (at least for the subjects for which they were available): empirical SCemp or FCemp; their virtual 1010 

duals FCMFM or SCMFM; or their bivirtual duals SCbi-MFM or FCbi-MFM (see Figure 7). 1011 

 1012 

Discriminating control and patient subjects in the ADNI dataset 1013 

For the first toy classification problem, we used target classification labels already provided within the 1014 

ADNI dataset, assuming them to be exact (see Materials and Methods for a summary of the used stratification 1015 

criteria). We performed then classification based on input vectors of regional node strengths estimated subject-1016 

by-subject from the connectome matrices of interest (Q = 96 input features, corresponding to the number of 1017 

brain regions in the used parcellation, see Materials and Methods). As supervised classifier algorithm, we chose 1018 

a variant (Seiffert et al., 2010) of the random forest algorithm, which is particularly suitable when the number of 1019 

input features is of the same order of the number of available data-points in the training set (Breiman, 2001), as 1020 

in our case.  1021 

Examples of ADNI classifications based on empirical connectomes are shown in Figures 7, notably, based 1022 

on SCemp matrices (green line, Figure 7B) or on FCemp matrices (green line, Figure 7C). The available subjects 1023 

were randomly split into a training set and a testing set (with maintained relative proportions of the different 1024 

classification labels). Figures 7B and 7C describe the average generalization performance for classifiers trained 1025 

on the training set and evaluated on a testing set. Training and testing on real empirical connectomes, we 1026 

achieved a moderate but significantly above chance level classification performance, as revealed by the green 1027 

Receiver-Operator-Curves (ROC) in Figures 7B and 7C, for both SCemp and FCemp connectomes, deviating away 1028 

from the diagonal (corresponding to chance level classification performance). As a more quantitative measure, 1029 
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one can also measure the median Area Under the ROC Curve (AUC), here equal to ~0.69 for the SCemp on SCemp 1030 

classifier and to ~0.75 for the FCemp on FCemp classifier. AUC scores for different types of classification on the 1031 

ADNI dataset are compiled in Extended Data Tables 3-1 and 3-2. 1032 

We considered then ADNI classification based on virtual and bivirtual duals instead of empirical 1033 

connectomes. In this case of “dual space classification” (Figure 7B), virtual and bivirtual duals are used both 1034 

when training the classifiers and when evaluating them. Therefore, to classify a new empirical connectome with 1035 

a “dual space classifier”, it is first necessary to “lift” it in dual space, i.e. to map it via data completion 1036 

algorithms to the suitable type of dual for which the classifier has been trained. Figure 7B shows two examples 1037 

of dual space ADNI classification based on FCMFM (blue curve, median AUC ~0.64) and SCbiMFM (magenta 1038 

curve, median AUC ~0.59), respectively virtual dual and bivirtual duals of the real connectomes SCemp. Once 1039 

again, for both virtual and bivirtual duals, classification performance remained above chance level. While the 1040 

classification performance drops slightly with respect to classification with the actual empirical connectomes, 1041 

this drop was not significant for a broad range of the most conservative decision thresholds. Above chance-level 1042 

classification is thus possible as well using dual connectomes generated from data completion, achieving 1043 

performances substantially equivalent to the one obtained for empirical connectomes. 1044 

We considered finally the case of ADNI classifiers trained on bivirtual duals and then evaluated on empirical 1045 

connectomes (Figure 7C). In this case of “cross-space classification”, the trained classifier is able to operate in a 1046 

performing manner as well on a different type of connectomes (e.g. empirical) than the one for which it has 1047 

been trained (e.g. bivirtual dual). Therefore, to classify a new empirical connectome with a “cross-space 1048 

classifier”, it is not necessary to first lift in dual space as for dual space classifiers. Figure 7C shows an example 1049 

of cross-space classification trained on bivirtual dual FCbiMFM and then tested on FCemp (orange curve, median 1050 

AUC ~0.70). Remarkably, the performance was not significantly different for most decision thresholds from 1051 

classification trained and tested on empirical FCemp connectomes. Therefore, classification of empirical 1052 

connectomes based on classifier trained on virtual connectomes is possible as well. 1053 

Significant classification was possible even for some other combinations of connectomes (see Extended 1054 

Data Tables 3-1 and 3-2), however performance was poorer in most cases. We did not attempt classification 1055 

based on SLM-based virtual and bivirtual duals, given the deceiving quality of connectome rendering by these 1056 

linear methods (in the ADNI dataset). 1057 

 1058 

 1059 
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Discriminating age classes in the healthy aging dataset 1060 

For the second toy classification problem, we split the subjects in the healthy aging datasets into four age 1061 

categories and used the ordinal number of the age class from I to IV as target classification label. As input 1062 

features we did not use any more high-dimensional vectors of connection strengths but the loadings on the first 1063 

10 principal components of each connectivity matrices. As classifier we still used random forests Breiman 1064 

algorithm (see Materials and Methods for full detail). As before, we highlight here a few examples of 1065 

classification with real empirical connectomes (Figure 7D), classification in dual space (Figure 7E) and cross-1066 

space classification (Figure 7F). We characterize performance both in terms of general accuracy (fraction of 1067 

subjects correctly classified in their age class) and of detailed confusion matrices between the actual and the 1068 

predicted age classes, revealing typical error syndromes. General accuracies were typically above the chance 1069 

level of ~25%, approaching (or exceeding), for instance, ~37% for classifiers: trained and tested on SCemp 1070 

(Figure 7D, left, ~37% accuracy) or FCemp (Figure 7D, right, ~43% accuracy); or, in virtual dual space, on 1071 

SCSLM (Figure 7E, left, ~45% accuracy) or FCMFM (Figure 6D, left, ~43% accuracy). For cross-space 1072 

classification examples, accuracies dropped but remained, e.g., of ~35% for classifiers trained on SCMFM and 1073 

generalized on FCemp (Figure 7F, left) or of ~30% when trained on FCSLM and tested on FCemp. More examples 1074 

are shown in Figure 7-1, including for classifiers using bivirtual connectomes (e.g. classifiers trained and tested 1075 

on FCbi-SLM with an accuracy of ~42%; but a minority of classifications were below chance level, e.g. trained on 1076 

FCbi-SLM and tested on FCemp, with an accuracy of only ~19%). 1077 

General accuracy does not reflect fully the performance, since it averages over all possible classes. The 1078 

capability to proper classify subjects of specific classes could be much larger. For instance, all but one of the 1079 

classifiers highlighted in Figures 7D-F would classify elderly subjects in the IVth age class (58-80 yrs) with 1080 

accuracies exceeding ~60%. Furthermore, when misclassified, subjects tended to be attributed to neighboring 1081 

but not radically different age classes –e.g. class I (18-25 yrs) with class II (26-39), or class IV (58-80 yrs) with 1082 

class III (40-57)–, more rarely mixing up classes with stronger age separation. Such misclassification may also 1083 

reflect meaningfully differences between subjects, whose connectome could look “younger” or “older” than the 1084 

median of their age class, possibly reflecting cognitive differences, large within each age class (cf. Glisky, 2007; 1085 

Battaglia et al., 2020). The analysis of factors explaining misclassification goes however beyond the scope of 1086 

the present study. 1087 

As a matter of fact, we are still far from providing authentically useful examples of classification, neither on 1088 

the ADNI dataset nor on the healthy aging dataset. However, this was not our aim here, the chosen classification 1089 
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problems themselves being rather academic and serving as first proofs-of-concept. Importantly, we can at least 1090 

show that dual and cross-space classification performance, if not good, was not much worse than for real 1091 

empirical connectomes. This step is already sufficient to show that empirical and virtual duals share an 1092 

extractable part of information and that this shared information can be still relevant for classification.  1093 

Such information preservation, despite loose correspondence, can be explained by revealing the similarity of 1094 

network topology features between real connectomes and their bivirtual duals, independently from our capacity 1095 

to achieve more or less performing classifications based on these features. 1096 

 1097 

Matching network topology between real and virtual connectomes 1098 

The connectome matrices describe the weighted undirected topology of graphs of structural or functional 1099 

connectivity. All information conveyed by these connectomes about pathology or other conditions is potentially 1100 

encoded into this network topology. While genuine model-free analyses of network topology across all scales 1101 

are still under development –see for instance, promising topological data analyses approaches (Petri et al., 2014; 1102 

Sizemore et al., 2018)–, classic graph theoretical features provide a first multi-faceted characterization of the 1103 

specific features of each individual connectome object (Bullmore & Sporns, 2009). We evaluated here for each 1104 

empirical connectome SCemp or FCemp a spectrum of different graph theoretical features. In particular we 1105 

evaluated for both the ADNI and the healthy aging datasets and for each brain region within each of the 1106 

connectomes (see Materials and Methods for details): the total strengths (sum of the connection weights of all 1107 

the links incident the region); the clustering coefficients (tendency of the regions neighboring to the considered 1108 

node to also be interconnected between them); and the centrality coefficients (tendency for any path linking two 1109 

different nodes in the network to pass through the considered node), evaluated via the PageRank algorithm (Brin 1110 

& Page, 1998). We also evaluated for each connectome its modular partition into communities, by using a 1111 

Louvain algorithm with default parameters (Blondel et al., 2008). Finally, we also inspected the global link 1112 

weight distributions. We then evaluated analogous quantities for the dual connectomes associated with each of 1113 

the connectomes, focusing here, for conciseness and simplicity, on bivirtual duals, sharing a common nature 1114 

(Structural or Functional) with their correspondent empirical partner. 1115 

In Figure 8 we illustrate this correspondence between graph-theoretical features evaluated for different 1116 

real/bivirtual dual connectome pairs in the ADNI dataset. An analogous figure for the healthy aging dataset is 1117 

shown in Figure 8-1, showing qualitatively equivalent results. To compare node degrees, clustering and 1118 

centrality features we plot, for every brain region in every connectome, the feature value evaluated in a real 1119 
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connectome against the corresponding feature value evaluated in the associated bivirtual dual. To compare 1120 

community structures, we evaluate for every real/bivirtual dual connectome pair the relative mutual 1121 

information MI normalized by entropy H (see Materials and Methods) between the community labels extracted 1122 

for the two connectomes, with 0% ≤ MI/H ≤ 100% and 100% corresponding to perfect overlap. We show results 1123 

for ADNI (or healthy aging) SC real/bivirtual dual pairs in Figure 8A (Figure 8-1A) and for FC pairs in Figure 1124 

8B (Figure 8-1B). In all cases we find correspondence between real and bivirtual dual connectome features 1125 

significantly above chance levels. Highly significant real/bivirtual dual correlations subsist for regional 1126 

strengths and centralities. For ADNI FC, these correlations can become as high as CCmedian = 0.66 (95% 1127 

bootstrap confidence interval) for regional strengths and CCmedian = 0.55 (95% bootstrap confidence interval) for 1128 

regional centralities. Correlations are found even for regional clustering coefficients, even if the small values of 1129 

clustering coefficients observed in SCemp connectomes are systematically overestimated in the denser bivirtual 1130 

dual SCbiMFM. Finally, concerning community matching, for SC and FC real/bivirtual dual pairs we found a 1131 

median relative mutual information of ~61% and ~45% respectively, for the ADNI dataset, safely above chance 1132 

level (estimated at ~16%, permutation-based 95% confidence interval). (see Table 3 for the superior 1133 

correspondence at the single subject level). For the healthy ageing dataset, for both SC and FC these correlations 1134 

were even higher (Figure 8-1) with CCmedian ≈ 0.8 for regional strengths, centralities, and clustering coefficients 1135 

of SC real/bivirtual dual parts and CCmedian ≈ 0.7 for the FC real/bivirtual dual parts. Finally, for the community 1136 

matching for SC pairs the median relative mutual information was ~44% and for FC pairs ~50% (see Table 4 for 1137 

the superior correspondence at the single subject level for healthy ageing dataset). 1138 

The analyses of Figure 8, and Figure 8-1 are performed at the ensemble level, i.e. pooling network features 1139 

estimated from different subjects into a same point cloud. However, network features can have important 1140 

variations of values not only across regions but also across subjects, which is expected to be a key indicator of 1141 

subject-specific traits useful for classification. The capability to preserve these traits would thus be a crucial 1142 

factor allowing the achievement of personalization when generating virtual and bivirtual duals. Therefore, we 1143 

computed correlations between vectors of regional features in real and empirical connectomes but now limited 1144 

to be within individual subjects obtaining thus, for every feature type, a different correlation value for every 1145 

subject. Table 3 (for the ADNI dataset) and Table 4 (for the healthy aging dataset) show that within-subject 1146 

correlations were also high (apart for SC clustering) and, for FC, even superior to ensemble-level correlations, 1147 

manifesting, once again, the personalized nature of bivirtual dual connectomes. Indeed, when computing 1148 

personalized correlations for pairs of real and bivirtual connectomes associated to a same matching subject, they 1149 
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resulted systematically superior to unpersonalized control correlations evaluated over real/bivirtual connectome 1150 

pairs assembled out of different subjects (see Materials and Methods). Percent improvements in same-subject 1151 

real/dual correlations with respect to average correlations in cross-subject pairs are compiled as well in Table 3 1152 

and Table 4. Personalization can lead to very strong percent improvements in real/virtual topology correlations, 1153 

particularly in the case of FC connectomes. The operation of dualization thus preserves aspects of network 1154 

topology which are specific to each subject and not just generic to a connectome ensemble.  1155 

Finally, we plot in Figure 6-1, global distributions of link weights for the different types of connectomes and 1156 

both datasets. Most distributions displayed an overall similarity in shape: SC weights distributions with a peak 1157 

at small values and a fat right tail; FC weights distribution more symmetric and with a broader peak at 1158 

intermediate strengths. These different distribution shapes reflect that SCemp networks are diluted matrices with 1159 

a few strong connections only, while FCemp networks have a higher and more uniform density of connections. 1160 

Virtual and bivirtual SC connectomes tend to have fatter right tails (and even displaced mode peaks for SCMFM), 1161 

reflecting that, in absence of any arbitrary sparsification strategy, completion pipelines generate surrogate SCs 1162 

without the sparsity constraint and, thus, with less near-zero link weights. Such systematic discrepancy, well 1163 

visible in Figure 6-1, however, does not prevent correlations between single subject-specific connectivity traits 1164 

to remain strong, which is a necessary condition for personalized predictive information preservation. 1165 

 1166 

Virtual cohorts 1167 

All nonlinear data completion algorithms involve a stochastic component. Therefore, by construction, each 1168 

simulation run will provide different virtual and bi-virtual connectomes, associated with the same empirical seed 1169 

connectome. This property allows the generation of an arbitrarily large ensemble of surrogate virtual 1170 

connectomes, forming the virtual cohorts associated with a specific subject (see Materials and Methods). Every 1171 

virtual cohort maintains a strict relation to its empirical counterparts because all the matrices in the cohort are 1172 

dual to the same original empirical connectome. In particular, distances between virtual connectomes sampled 1173 

within two different virtual cohorts were always closely correlated to the distance between the respective seed 1174 

connectomes of the two cohorts. The close relationship between the original data and the respective virtual 1175 

cohorts (already studied in Figure 6 for individual instances of bivirtual connectomes) is visually manifested in 1176 

Figure 9A where a distance-respecting non-linear t-SNE projection (Van Der Maaten & Hinton, 2008) has been 1177 

used to represent in two dimensions the virtual cohorts of surrogate virtual FCMFM’s associated to the 88 subjects 1178 

with available SCemp in the ADNI dataset (among which, thus, also the 12 of the “SC+FC” subset). Every dot 1179 



 

 41 

corresponds here to the two-dimensional projection of a high-dimensional virtual dual FCMFM (100 different 1180 

virtual FCMFM’s have been generated starting from each one of the 88 SCemp connectomes). Clusters of dots 1181 

(color-coded by their nature, of control subjects or MCI and AD patients) are visually evident in the projection 1182 

indicating that the distance between dual connectomes within each virtual cohort is smaller than the distance 1183 

between dual connectomes belonging to different cohorts. 1184 

We also plotted, for comparison, the cloud of the projected FCemp connectomes for the twelve subjects of the 1185 

ADNI “SC+FC” dataset for which it was available, and connected these projections via a thin line to the 1186 

projection of one of their virtual FCMFM images in the corresponding subjects’ virtual cohorts. The projections 1187 

for all the FCemp connectomes seem to collapse in a single additional cluster close to the center of the global t-1188 

SNE map. This collapse manifests that empirical connectomes and virtual connectomes live in different spaces, 1189 

as previously stressed (Figure 7A). Eventually, when projecting a sample composed of hundred more virtual 1190 

than empirical connectomes, the two-dimensional rendering of the original high-dimensional metric relations is 1191 

dominated by virtual connectomes. Therefore, the cloud of the empirical connectomes’ projections appears, 1192 

using a figurative image, as a “distant galaxy”, with the dots (“stars”) associated to different subjects appearing 1193 

grouped in a small region of the observation field. Nevertheless, the distances between stars within the distant 1194 

galaxy are mirrored by the distances between the foreground FCMFM cohorts “globular clusters” mapped to each 1195 

of these distant background FCemp stars. The thin lines linking FCemp to one of their FCMFM images reveal indeed 1196 

the global t-SNE projection contains an exploded view of the projection of the original “SC+FC” subset FCemp 1197 

connectomes (further confirming for virtual cohorts the preservation of inter-subject distances in bivirtual duals 1198 

revealed by Tables 3 and 4). 1199 

A further analogy could be drawn between generating a cohort of virtual connectomes rather than a single 1200 

virtual connectome and between generating an ensemble of slightly rotated or distorted images (Figure 9B). 1201 

Different connectomes in a same cohort could be conceptualized as different “views” of the same connectome 1202 

(as the four representative connectomes in the top of Figure 9B, sampled within the cohort of a same subject) 1203 

much like different transformations of a single image that modify the exact appearance but do not prevent losing 1204 

the identity of the depicted object (as the four warped kittens at the bottom of Figure 9B). For these reasons, the 1205 

generation of virtual cohorts including a larger number of identity-preserving redundant connectome items may 1206 

become in perspective beneficial to classifiers training, as a form of “data augmentation”, commonly used in 1207 

machine learning applications in image recognition (Taylor & Nitshcke, 2018; see Discussion). 1208 

 1209 
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 1210 

Discussion 1211 
 1212 

We have here demonstrated the feasibility of connectomic dataset completion using algorithms based on 1213 

mean-field computational modeling. In particular, we have completed an ADNI gold standard connectomic 1214 

dataset and verified that analogous completion performance could be reached on a control healthy aging dataset. 1215 

We have then shown that machine learning classifiers trained on virtual connectomes can reach comparable 1216 

performance to those trained on empirical connectomes. This renders the classification of novel empirical 1217 

connectomes via classifiers trained exclusively on virtual connectomes possible. Furthermore, the generation of 1218 

virtual and bivirtual dual connectomes is a procedure preserving at least some personalized information about 1219 

detailed network topology. As a consequence, virtual cohorts offer an immense opportunity to enable or 1220 

unblock, and, in perspective, possibly improve machine learning efforts on large patient databases.  1221 

Incomplete datasets for clinical research are certainly among the factors contributing to slow progress in the 1222 

development of new diagnostic and therapeutic tools in neurodegenerative diseases and Alzheimer’s disease 1223 

(AD) in particular. Our data completion procedures provide a step forward toward “filling dataset gaps” since 1224 

they allowed us to infer Functional Connectivity when only Structural Connectivity was available or Structural 1225 

Connectivity (SC) when only Functional Connectivity (FC) were available. Such procedures for data 1226 

completion could easily be implemented within popular neuroinformatic platforms as The Virtual Brain (TVB). 1227 

TVB provides practical graphical interfaces or fully scriptable code-line environments for “plug-and-play” 1228 

large-scale brain network behavior, signal emulation, and dataset management, including simulating SC and FC 1229 

with adjustable complexity MFMs or SLMs (Sanz-Leon et al., 2013). In this way, capitalizing on the software 1230 

built-in capabilities, even the more elaborated non-linear completion algorithms could become accessible to 1231 

non-expert users with only a little training. The possibility of having access to both types of connectomic 1232 

information brought up by model-based data completion is vital because structural and functional connectivity 1233 

convey complementary information. It has been shown for instance, that analyses of SC-to-FC inter-relations 1234 

can yield better characterizations and group discriminations than analyses of SC or FC alone in a variety of 1235 

pathologies or conditions (Zhang et al., 2011; Davis et al., 2012; Zimmermann et al., 2016; Straathof et al., 1236 

2019).  1237 

Indeed, FC networks in the resting-state do not merely mirror SC but are believed to be the by-product of 1238 

complex dynamics of multi-scale brain circuits (Honey et al., 2007; Deco et al., 2011). As such, they are 1239 
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constrained but not entirely determined by the underlying anatomy (encoded in the SC matrix), as also 1240 

confirmed by the fact that variability between FCs of different subjects may be larger than the one between SCs 1241 

(Zimmermann et al., 2019). Indeed, FC also carries valuable information about the dynamic regime giving rise 1242 

to the observed resting-state activity fluctuations (Hansen et al., 2015) and FC differences are thus leveraged by 1243 

the nonlinear effects of dynamics that small variations in SC can have and that MFM models can in principle 1244 

capture. 1245 

In particular, brain networks are thought to operate at a regime close to criticality. For a fixed SC, the resulting 1246 

FC would be different depending on how closely dynamics is tuned to be in proximity of a critical working 1247 

point (Deco et al., 2013; Hansen et al., 2015). This information that brain networks are supposed to operate 1248 

close to a critical boundary is used to generate the surrogate virtual FCMFM, when performing non-linear SC-to-1249 

FC completion. Thus, FCMFM carries indirectly extra information about a (putative) dynamic regime that was not 1250 

conveyed by the original empirical SC (nor by virtual completions with linear SLM-based pipelines). This 1251 

effective “reinjection” of information could potentially compensate for unavoidable loss –cf. “data processing 1252 

inequality” (Cover & Thomas, 2006)– along the algorithmic processing chain represented by completion. This 1253 

could be a possible explanation for the superior performance of nonlinear methods in the ADNI dataset 1254 

completion. For this compensation to happen, however, the guess about the right working point should be close 1255 

to reality. In this paper we were implicitly supposing that all the subjects have the same working point of 1256 

dynamic operation (e.g. the same distance from critical rate instability, Hansen et al., 2020). Now, pathology or 1257 

aging may precisely be also altering this working point itself, making of our assumption in MFM-based 1258 

completion only an approximation. For instance, the distributions of matching between empirical and virtual 1259 

community structure in FC connectomes for the healthy aging dataset (Figure 8-1B) are clearly bimodal, 1260 

indicating that the used completion ansatz may be more appropriate for certain subjects than for others. Thus, 1261 

diverse working points of dynamic operation for different subjects, here not accounted for, may contribute to the 1262 

inferior performance of nonlinear methods in the healthy aging dataset. We defer to future studies 1263 

considerations about how to further optimize the selection of a working point. 1264 

When both empirical SC and FC were available, we could measure the quality of reconstruction achieved by 1265 

our models. The correlation reached between empirical and reconstructed connectivity matrices is only 1266 

moderate, however. There are multiple reasons for this limited performance. One evident reason is the 1267 

simplicity of the neural mass model adopted in our proof-of-concept illustration. The Wong-Wang neural mass 1268 

model is able only to express two states of lower or higher local activation (Wong & Wang, 2006). Instead, 1269 
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neuronal populations can display a much more extensive repertoire of possible dynamics, including e.g., 1270 

coherent oscillations at multiple frequencies, bursting, or chaotic trajectories (Stefanescu & Jirsa, 2008; Spiegler 1271 

et al., 2011). Synchronization in a network depends on various factors, including frequency, network topology, 1272 

and time delays via signal propagation, all of which have been ignored here and in large parts of the literature 1273 

(Deco et al., 2009; Petkoski & Jirsa, 2019). It is acknowledged that delay-less approaches serve as a useful 1274 

approximation (Deco et al. 2015). Nevertheless, we are aware that our choice to restrict our analyses on the 1275 

subset of activation-based mechanisms introduces critical limitations. Indeed, our models, ignoring delay-1276 

mediated synchronization, are incapable of capturing a range of dynamic oscillatory behaviors, such as 1277 

multifrequency coupling or multiphase coupling. More sophisticated mean-field virtual brain models could thus 1278 

reach superior performance (see e.g. Stefanovski et al., 2019), going beyond the first proof-of-concept examples 1279 

presented here. 1280 

Yet, even such a simple model, achieving such a limited reconstruction performance proved to be consistent 1281 

and useful. First, when concatenating data completion pipelines to give rise to bi-virtual data, we found a robust 1282 

self-consistency, i.e. remarkable matching between e.g. the original SC (or FC) and the bi-virtual SCbi-MFM (or 1283 

FCbi-MFM) generated via the intermediated FCMFM (or SCMFM) step. This self-consistent correspondence is not 1284 

limited to generic correlations but captures actual personalized aspects of detailed network topology (Table 3 1285 

and Figure 8 for the ADNI dataset and Table 4 and Extended Data Figure 8-1 for the healthy ageing dataset). 1286 

Second, classification performance reached based on empirical data could be nearly equated by classifiers 1287 

trained on virtual or bivirtual dual connectomes (Figure 7). Therefore, even if the reconstruction quality of our 1288 

model-based completion procedures is modest, a meaningful relationship with the original seed data is still 1289 

maintained, even after two steps of virtual completion. The use of simple models has the additional advantage of 1290 

being less computationally expensive to simulate. SLMs are even simpler and faster to run than our basic MFMs 1291 

and their performance was better than the one of nonlinear models in many aspects when dealing with the 1292 

healthy aging dataset. Note that SLMs have been shown to be very performing in rendering static aspects of FC 1293 

in other contexts as well (Hansen et al., 2020; Messé et al., 2014). However, linear models were down-1294 

performing on the ADNI dataset, while nonlinear models performance seemed more stable across datasets. This 1295 

shows once again that linear and nonlinear models may capture different facets of the actual, possibly unknown 1296 

empirical connectomes and that there is an interest in computing and sharing both type of surrogates, given their 1297 

potential complementarity. 1298 
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In terms of computation costs, basic MFMs as our virtual brains based on the Wong-Wang model, provide a 1299 

reasonable compromise between computational speed and the need to render structured brain dynamics beyond 1300 

mere Gaussian fluctuations (Haken, 1983) constrained by SC. The most expensive aspect of nonlinear 1301 

completion procedures –both SC-to-FC and FC-to-SC– is however their iterative nature. Indeed, not just one, 1302 

but many virtual brain simulations must be performed, to scan parameter space for the best working point for 1303 

FC simulation (cf. Figure 3) or to grow from random initial conditions an effective connectivity matrix 1304 

sufficiently mature to render genuine aspects of SC (cf. Figure 4). Note however that, in reality, the number of 1305 

iterations can be dramatically reduced by choosing good guesses for initial conditions. In the case of SC-to-FC 1306 

completion, the a priori knowledge that best working point lie close to a critical line and that the monitored 1307 

metrics landscape is convex, a bisection search strategy (Boyd & Vanderberghe, 2004) can be used instead of 1308 

exhaustive grid search. In the case of FC-to-SC completion, starting from an initial SC* conditions close to a 1309 

generic group-averaged SC connectome rather than fully random can speed-up convergence. 1310 

We have provided in Figure 7 the first proof of concept of the possibility to use virtual and bivirtual 1311 

connectomes for performing subject classification. For the purpose of classification, data completion procedures 1312 

are seen as veritable computational bridges between alternative “spaces” in which to perform machine learning, 1313 

linked by duality relations (Figure 7A). We propose in this respect two possible types of strategy. The first one 1314 

is to abandon the “real space” of actual empirical connectomes and to operate directly in dual spaces (Figure 1315 

7B). In these approaches, empirical connectomes would have to be transformed into their virtual or bivirtual 1316 

dual counterparts as a necessary pre-processing step. In the second type of strategy, classifiers trained in dual 1317 

spaces are used to operate in the real space. While such approach doesn’t require the virtualization of empirical 1318 

input connectomes prior to their classification, performance could be potentially reduced by a possible 1319 

systematic mismatch in input feature distributions between real and dual spaces (Figure 8 and Extended Data 1320 

Figure 8-1 show, for instance, some network features such as, respectively, SC clustering or SC weights 1321 

themselves tend to get overestimated in dual connectomes). The specific examples highlighted in Figures 7B 1322 

and 7C for ADNI patient discrimination and Figures 7D-F for healthy aging age class prediction show 1323 

comparable qualities of classification for dual space and cross-space classifications (in both cases, not 1324 

significantly decreases with respect to classification in real space). Generally, we were able only to reach poor 1325 

classification performances, barely above chance level. However, the performance was not significantly better 1326 

for direct classification based on empirical connectomes. As a matter of fact, we have to acknowledge that we 1327 

are still far from being able to reliably discriminate subject classes based on connectome features, independently 1328 
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from training being performed on real or dual connectomes. We would like to stress that the number of used 1329 

input features –e.g. K = 96, corresponding to the number of regions in the used parcellation (see Materials and 1330 

Methods) for which connectivity strengths were computed in the ADNI dataset classification problem – is 1331 

comparable to the number of subjects in the considered dataset (N = 88 or 178 respectively for ADNI subjects 1332 

with available SCemp or FCemp). Therefore, it is not surprising that high performances are difficult to access, even 1333 

when using classification approaches specially adapted to this situation, as in our case. Superior classification 1334 

performance could be potentially reached via a more careful feature selection (Guyon & Elisseeff, 2003) that 1335 

goes beyond the scope of the current study. Hopefully, future attempts to classification will be able to approach 1336 

more robustly these tendential performances. Given the high degree of personalized correspondence between 1337 

real and dual connectomes (cf. Table 3 for the ADNI dataset and Table 4 for the healthy ageing dataset), we are 1338 

confident that any performance level reached by future classifiers trained in real space could be closely 1339 

approached by classifiers trained in dual virtual and bivirtual spaces. 1340 

In perspective, the use of virtual connectomes could become beneficial to the training of machine learning 1341 

algorithms in a further way. The use of a wider ensemble of surrogate date with statistical distributions of multi-1342 

dimensional features equivalent to the original data is a common practice in machine learning, known as data 1343 

augmentation (Yaeger et al., 1997; Taylor & Nitshcke, 2018), as previously mentioned. Data augmentation is 1344 

e.g. very popular in object recognition (where surrogate training data are produced by clipping or variously 1345 

transforming copies of the original training images). Data augmentation aims to expand the training dataset 1346 

beyond the initially available data to boost the learning by a classifier of the target categories (e.g. object 1347 

identities). Crucial for dataset augmentation applications is that the surrogate data generated are not just 1348 

identical to the actual data with some added noise but are genuinely new and can serve as actual good guesses 1349 

for alternative (unobserved) instances of data-points belonging to the same category (cf. Figure 9B). Indeed, if 1350 

information cannot be created (Cover & Thomas 2006), redundant information can nevertheless improve the 1351 

performance of decoding and classification (Guyon & Elisseeff, 2003). Computational models such as MFM do 1352 

not provide mappings between input and output connectomes, but rather between statistical ensembles of 1353 

connectomes, with both mean and correlated dispersion realistically shaped by trustworthy non-linear dynamics. 1354 

In other words, differences between alternative connectomes in a generated surrogate virtual cohort are not mere 1355 

“noise”, but reflect realistic data-compliant possibilities of variation. The different connectome realizations 1356 

sample indeed the specific landscapes of possible FCs that may be compatible with a given SCs, degenerate 1357 

because the allowed dynamics to unfold along with low-dimensional manifolds, rather than being frozen in strict 1358 
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vicinity of a trivial fixed point (Mehrkanoon et al., 2014; Pillai & Jirsa, 2017). Therefore, given that inter-1359 

relations between virtual cohorts mirror inter-relations between empirical subjects (Figures 6 and 8, Extended 1360 

Data Figure 8-1, Tables 3, 4, 5, and Extended Data Table 5-1), the generation of surrogate virtual cohorts of 1361 

arbitrarily large size could provide natural candidates for future data augmentation applications. 1362 

Yet, by capitalizing exclusively on redundancy, augmentation cannot replace the gathering of more 1363 

empirical data (Carrillo et al., 2012; Toga et al., 2016). Unfortunately, federation (or even mining) of data is 1364 

often impeded by unavoidable juridical concerns linked to strict and diverse regulations (Dulong de Rosnay, 1365 

2017; Thorogood et al., 2018) The use of virtual cohorts may once again relieve this burden. Virtual cohorts 1366 

maintain their statistical relation to the original data, in a way sufficiently good to be exploitable for 1367 

classification, but do not precisely match the original data, maintaining an inherent variability. This fact may 1368 

constitute a feature rather than a bug, in the context of data sharing. Indeed, if virtual data carry information 1369 

operationally equivalent to the one carried by empirical data, they do not carry exactly the same information. It 1370 

is not, therefore, possible to exactly reconstruct the original subject data from virtualized connectomes, and 1371 

privacy concerns would be considerably reduced if not entirely removed by sharing dual space images of actual 1372 

data –eventually demultiplied into virtual cohorts– rather than the original real space data. We thus anticipate a 1373 

near future in which virtual cohorts, providing vast numbers of virtual and bi-virtual connectivity information, 1374 

will play an increasing role in massive data-driven explorations of factors predictive of pathology and, in 1375 

particular, neurodegenerative disease progression. 1376 

 1377 

 1378 

  1379 



 

 48 

Acknowledgements:  1380 

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative 1381 

(ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award 1382 

number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of 1383 

Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, 1384 

Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; 1385 

Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and 1386 

Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE 1387 

Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & 1388 

Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale 1389 

Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer 1390 

Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian 1391 

Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector 1392 

contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee 1393 

organization is the Northern California Institute for Research and Education, and the study is coordinated by the 1394 

Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are 1395 

disseminated by the Laboratory for Neuro Imaging at the University of Southern California. DB acknowledges 1396 

support from the EU Innovative Training Network “i-CONN” (H2020 ITN 859937) and VJ acknowledges 1397 

funding by the European Union’s Horizon 2020 Framework Program for Research and Innovation under the 1398 

Specific Grant Agreement No. 785907 (Human Brain Project SGA2) and H2020 Research and Innovation 1399 

Action grants VirtualBrainCloud, and RM acknowledges Brightfocus Foundation ADR grant program, grant 1400 

reference number: A2017286S. 1401 

  1402 



 

 49 

References 1403 

 1404 

Aerts H, Schirner M, Jeurissen B, Van Roost D, Achten E, Ritter P, Marinazzo D. Modeling brain dynamics in brain 1405 

tumor patients using The Virtual Brain. eNeuro. 2018; 5(3). https://dx.doi.org/10.1523/eneuro.0083-18.2018 1406 

Allen GI, Amoroso N, Anghel C, Balagurusamy V, Bare CJ, Beaton D, Bellotti R, Bennett DA, Boehme KL, Boutros PC, 1407 

et al. Crowdsourced estimation of cognitive decline and resilience in Alzheimer’s disease. Alzheimer’s & 1408 

Dementia. 2016; 12(6):645–653. https://doi.org/10.1016/j.jalz.2016.02.006 1409 

Arbabyazd, Lucas M., et al. "Dynamic Functional Connectivity as a complex random walk: Definitions and the 1410 

dFCwalk toolbox." MethodsX 7 (2020): 101168. 1411 

Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible evaluation of ANTs similarity metric 1412 

performance in brain image registration. Neuroimage. 2011; 54(3):2033–2044. 1413 

https://doi.org/10.1016/j.neuroimage.2010.09.025 1414 

Battaglia D, Witt A, Wolf F, Geisel T. Dynamic effective connectivity of inter-areal brain circuits. PloS computational 1415 

biology. 2012; 8(3):e1002438. https://doi.org/10.1371/journal.pcbi.1002438 1416 

Battaglia D, et al. (2020) Dynamic Functional Connectivity between order and randomness and its evolution across 1417 

the human adult lifespan. NeuroImage 222:117156. 1418 

Beckett LA, Donohue MC, Wang C, Aisen P, Harvey DJ, Saito N, Initiative ADNI, et al. The Alzheimer’s Disease 1419 

Neuroimaging Initiative phase 2: Increasing the length, breadth, and depth of our understanding. Alzheimer’s 1420 

& Dementia. 2015; 11(7):823–831. https://doi.org/10.1016/j.jalz.2015.05.004 1421 

Bezgin G, Solodkin A, Bakker R, Ritter P, McIntosh AR. Mapping complementary features of cross-species structural 1422 

connectivity to construct realistic “Virtual Brains”. Human brain mapping. 2017; 38(4):2080–2093. 1423 

https://doi.org/10.1002/hbm.23506 1424 

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech-1425 

Theory E. 2008; 10:P10008. 1426 

Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge: Cambridge University Press. 1427 

Doi:10.1017/CBO9780511804441 1428 



 

 50 

Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated 1429 

neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta neuropathologica. 2006; 1430 

112(4):389–404. https://doi.org/10.1007/s00401-006-0127-z 1431 

Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta neuropathologica. 1991; 1432 

82(4):239–259. https://doi.org/10.1007/BF00308809 1433 

Breiman L. Random forests. Machine learning. 2001; 45(1):5–32. https://doi.org/10.1017/CBO9781107415324.004 1434 

Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN 1435 

systems. 1998; 30(1-7):107-117.  1436 

Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat 1437 

Rev Neurosci 2009; 10(3):186–198. 1438 

Carrillo MC, Bain LJ, Frisoni GB, Weiner MW. Worldwide Alzheimer’s disease neuroimaging initiative. Alzheimer’s & 1439 

Dementia. 2012; 8(4):337–342. https://doi.org/10.1016/j.jalz.2012.04.007 1440 

Casanova R, Barnard RT, Gaussoin SA, Saldana S, Hayden KM, Manson JE, Wallace RB, Rapp SR, Resnick SM, 1441 

Espeland MA, et al. Using high-dimensional machine learning methods to estimate an anatomical risk factor 1442 

for Alzheimer’s disease across imaging databases. NeuroImage. 2018; 183:401–411. 1443 

https://doi.org/10.1016/j.neuroimage.2018.08.040 1444 

Chen B, Xu T, Zhou C, Wang L, Yang N, Wang Z, Dong HM, Yang Z, Zang YF, Zuo XN, et al. Individual variability and 1445 

test-retest reliability revealed by ten repeated resting-state brain scans over one month. PLoS One. 2015; 1446 

10(12):e0144963. https://doi.org/10.1371/journal.pone.0144963 1447 

Chiesa PA, Cavedo E, Lista S, Thompson PM, Hampel H, Initiative APM, et al. Revolution of resting-state functional 1448 

neuroimaging genetics in Alzheimer’s disease. Trends in neurosciences. 2017; 40(8):469–480. 1449 

https://doi.org/10.1016/j.tins.2017.06.002 1450 

Cole, J.H., Franke, K., 2017. Predicting Age Using Neuroimaging: Innovative Brain Ageing Biomarkers. Trends 1451 

Neurosci 40, 681–690. doi:10.1016/j.tins.2017.10.001 1452 

Cover TM, Thomas JA. Elements of information theory. John Wiley & Sons; 2006. 1453 

https://doi.org/10.1002/047174882X 1454 



 

 51 

Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehéricy S, Habert MO, Chupin M, Benali H, Colliot O, Initiative ADN, et 1455 

al. Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten 1456 

methods using the ADNI database. neuroimage. 2011; 56(2):766–781. 1457 

https://doi.org/10.1016/j.neuroimage.2010.06.013 1458 

Davis SW, Kragel JE, Madden DJ, Cabeza R. The architecture of cross-hemispheric communication in the aging brain: 1459 

linking behavior to functional and structural connectivity. Cerebral cortex. 2012; 22(1):232–242. 1460 

https://doi.org/10.1093/cercor/bhr123 1461 

Deco G, Jirsa V, McIntosh AR, Sporns O, Kötter R. Key role of coupling, delay, and noise in resting brain fluctuations. 1462 

Proceedings of the National Academy of Sciences. 2009; 106(25):10302–10307. 1463 

https://doi.org/10.1073/pnas.0901831106 1464 

Deco G, Jirsa VK. Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. Journal of 1465 

Neuroscience. 2012; 32(10):3366–3375. https://doi.org/10.1523/JNEUROSCI.2523-11.2012 1466 

Deco G, Jirsa VK, McIntosh AR. Emerging concepts for the dynamical organization of resting-state activity in the 1467 

brain. Nature Reviews Neuroscience. 2011; 12(1):43. https://doi.org/10.1038/nrn2961 1468 

Deco G, Ponce-Alvarez A, Mantini D, Romani GL, Hagmann P, Corbetta M. Resting-state functional connectivity 1469 

emerges from structurally and dynamically shaped slow linear fluctuations. Journal of Neuroscience. 2013; 1470 

33(27):11239–11252. https://doi.org/10.1523/JNEUROSCI.1091-13.2013 1471 

Deco G, Tononi G, Boly M, Kringelbach ML. Rethinking segregation and integration: contributions of whole-brain 1472 

modelling. Nature Reviews Neuroscience. 2015; 16(7):430. https://doi.org/10.1038/nrn3963 1473 

Dennis EL, Thompson PM. Functional brain connectivity using fMRI in aging and Alzheimer’s disease. 1474 

Neuropsychology review. 2014; 24(1):49–62. https://doi.org/10.1007/3-11065-014-9249-6 1475 

Desikan, Rahul S., et al. "An automated labeling system for subdividing the human cerebral cortex on MRI scans into 1476 

gyral based regions of interest." Neuroimage 31.3 (2006): 968-980. 1477 

Doan, N.T., Engvig, A., Zaske, K., Persson, K., Lund, M.J., Kaufmann, T., Cordova-Palomera, A., Alnæs, D., Moberget, 1478 

T., Brækhus, A., Barca, M.L., Nordvik, J.E., Engedal, K., Agartz, I., Selbæk, G., Andreassen, O.A., Westlye, L.T., 1479 

Alzheimer's Disease Neuroimaging Initiative, 2017. Distinguishing early and late brain aging from the 1480 



 

 52 

Alzheimer's disease spectrum: consistent morphological patterns across independent samples. NeuroImage 1481 

158, 282–295. doi:10.1016/j.neuroimage.2017.06.070 1482 

Fillmore PT, Phillips-Meek MC, Richards JE. Age-specific MRI brain and head templates for healthy adults from 20 1483 

through 89 years of age. Frontiers in aging neuroscience. 2015; 7:44. 1484 

https://doi.org/10.3389/fnagi.2015.00044 1485 

Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage. 2003; 19(4):1273–1302. 1486 

Galán RF. On how network architecture determines the dominant patterns of spontaneous neural activity. PLoS 1487 

One. 2008; 3(5):e2148. https://doi.org/10.1371/journal.pone.0002148 1488 

Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK. Noise during rest enables the exploration of the brain’s dynamic 1489 

repertoire. PLoS computational biology. 2008; 4(10):e1000196. https://doi.org/10.1371/journal.pcbi.1000196 1490 

Gilson M, Deco G, Friston KJ, Hagmann P, Mantini D, Betti V, Romani GL, Corbetta M. Effective connectivity inferred 1491 

from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical 1492 

interactions. Neuroimage. 2018; 180:534–546. https://doi.org/10.1016/j.neuroimage.2017.09.061 1493 

Gilson M, Moreno-Bote R, Ponce-Alvarez A, Ritter P, Deco G. Estimation of directed effective connectivity from fMRI 1494 

functional connectivity hints at asymmetries of cortical connectome. PLoS computational biology. 2016; 1495 

12(3):e1004762. https://doi.org/10.1371/journal.pcbi.1004762 1496 

Glisky EL. Changes in Cognitive Function in Human Aging. In: Riddle DR, editor. Brain Aging: Models, Methods, and 1497 

Mechanisms. Boca Raton (FL): CRC Press/Taylor & Francis; 2007. 1498 

Golos M, Jirsa V, Daucé E. Multistability in large scale models of brain activity. PLoS computational biology. 2015; 1499 

11(12):e1004644. https://doi.org/10.1371/journal.pcbi.1004644 1500 

Goñi J, van den Heuvel MP, Avena-Koenigsberger A, de Mendizabal NV, Betzel RF, Griffa A, Hagmann P, Corominas- 1501 

Murtra B, Thiran JP, Sporns O. Resting-brain functional connectivity predicted by analytic measures of network 1502 

communication. Proceedings of the National Academy of Sciences. 2014; 111(2):833–838. 1503 

https://doi.org/10.1073/pnas.1315529111 1504 



 

 53 

Gorgolewski K, Burns CD, Madison C, Clark D, Halchenko YO, Waskom ML, Ghosh SS. Nipype: a flexible, lightweight 1505 

and extensible neuroimaging data processing framework in python. Frontiers in neuroinformatics. 2011; 5:13. 1506 

https://doi.org/10.3389/fninf.2011.00013 1507 

Guyon I, Elisseeff A. An introduction to variable and feature selection. Journal of machine learning research. 2003; 1508 

3(Mar):1157–1182.  1509 

Hagmann P, et al. Mapping the structural core of human cerebral cortex. 2008; PLoS Biol 6(7):e159. 1510 

Haken H. Synergetics. Nonequilibrium phase transitions and self-organization in physics, chemistry and biology. 3rd 1511 

rev. enl. ed. New York: Springer-Verlag. 1983; http://dx.doi.org/10.1007/978-3-642-88338-5  1512 

Hansen EC, Battaglia D, Spiegler A, Deco G, Jirsa VK. Functional connectivity dynamics: modeling the switching 1513 

behavior of the resting state. Neuroimage. 2015; 105:525–535. 1514 

https://doi.org/10.1016/j.neuroimage.2014.11.001 1515 

Henstridge CM, Hyman BT, Spires-Jones TL. Beyond the neuron–cellular interactions early in Alzheimer disease 1516 

pathogenesis. Nature Reviews Neuroscience. 2019; p. 1. https://doi.org/10.1038/s41583-018-0113-1 1517 

Honey CJ, Kötter R, Breakspear M, Sporns O. Network structure of cerebral cortex shapes functional connectivity on 1518 

multiple time scales. Proceedings of the National Academy of Sciences. 2007; 104(24):10240–10245. 1519 

https://doi.org/10.1073/pnas.0701519104 1520 

Horien, C., Noble, S., Greene, A.S. et al. A hitchhiker’s guide to working with large, open-source neuroimaging 1521 

datasets. Nat Hum Behav (2020). https://doi.org/10.1038/s41562-020-01005-4 1522 

Iacono D, Markesbery W, Gross M, Pletnikova O, Rudow G, Zandi P, Troncoso JC. The Nun study: clinically silent AD, 1523 

neuronal hypertrophy, and linguistic skills in early life. Neurology. 2009; 73(9):665–673. 1524 

https://doi.org/10.1212/WNL.0b013e3181b01077 1525 

Iddi S, Li D, Aisen PS, Rafii MS, Thompson WK, Donohue MC, Initiative ADN, et al. Predicting the course of 1526 

Alzheimer’s progression. Brain informatics. 2019; 6(1):6. https://doi.org/10.1186/s40708-019-0099-0 1527 

Iyappan A, Kawalia SB, Raschka T, Hofmann-Apitius M, Senger P. NeuroRDF: semantic integration of highly curated 1528 

data to prioritize biomarker candidates in Alzheimer’s disease. Journal of biomedical semantics. 2016; 7(1):45. 1529 

https://doi.org/10.1186/3-13326-016-0079-8 1530 



 

 54 

Jirsa VK, Proix T, Perdikis D, Woodman MM, Wang H, Gonzalez-Martinez J, Bernard C, Bénar C, Guye M, Chauvel P, 1531 

et al. The virtual epileptic patient: individualized whole-brain models of epilepsy spread. Neuroimage. 2017; 1532 

145:377–388. https://doi.org/10.1016/j.neuroimage.2016.04.049 1533 

Kirst C, Timme M, Battaglia D. Dynamic information routing in complex networks. Nature communications. 2016; 1534 

7:11061. https://doi.org/10.1038/ncomm3-11061 1535 

Kodamullil AT, Younesi E, Naz M, Bagewadi S, Hofmann-Apitius M. Computable cause-and-effect models of healthy 1536 

and Alzheimer’s disease states and their mechanistic differential analysis. Alzheimer’s & Dementia. 2015; 1537 

11(11):1329–1339. https://doi.org/10.1016/j.jalz.2015.02.006 1538 

Komarova NL, Thalhauser CJ. High degree of heterogeneity in Alzheimer’s disease progression patterns. PLoS 1539 

computational biology. 2011; 7(11):e1002251. https://doi.org/10.1371/journal.pcbi.1002251 1540 

Kötter R, Wanke E. Mapping brains without coordinates. Philosophical Transactions of the Royal Society B: Biological 1541 

Sciences. 2005; 360(1456):751–766. https://doi.org/10.1098/rstb.2005.1625 1542 

Lombardo D, et al. (2020) Modular slowing of resting-state dynamic Functional Connectivity as a marker of cognitive 1543 

dysfunction induced by sleep deprivation. NeuroImage 222:117155. 1544 

Lutkenhoff ES, Rosenberg M, Chiang J, Zhang K, Pickard JD, Owen AM, Monti MM. Optimized brain extraction for 1545 

pathological brains (optiBET). PLoS One. 2014; 9(12):e115551. https://doi.org/10.1371/journal.pone.0115551 1546 

Maaten Lvd, Hinton G. Visualizing data using t-SNE. Journal of machine learning research. 2008; 9(Nov):2579– 2605.  1547 

Margolis, R., Derr, L., Dunn, M., Huerta, M., Larkin, J., Sheehan, J., Guyer, M., Green, E.D., 2014. The National 1548 

Institutes of Health's Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data. J Am Med 1549 

Inform Assoc 21, 957–958. doi:10.1136/amiajnl-2014-002974 1550 

Mehrkanoon S, Breakspear M, Boonstra TW. Low-dimensional dynamics of resting-state cortical activity. Brain 1551 

topography. 2014; 27(3):338–352. https://doi.org/10.1007/3-10548-013-0319-5 1552 

Melozzi F, Bergmann E, Harris JA, Kahn I, Jirsa V, Bernard C. Individual structural features constrain the functional 1553 

connectome. bioRxiv. 2019; p. 613307. https://doi.org/10.1101/613307 1554 



 

 55 

Messé A, Rudrauf D, Benali H, Marrelec G. Relating structure and function in the human brain: relative contributions 1555 

of anatomy, stationary dynamics, and non-stationarities. PLoS computational biology. 2014; 10(3):e1003530. 1556 

https://doi.org/10.1371/journal.pcbi.1003530 1557 

Moore P, Lyons T, Gallacher J, Initiative ADN, et al. Random forest prediction of Alzheimer’s disease using pairwise 1558 

selection from time series data. PLoS One. 2019; 14(2):e0211558. 1559 

https://doi.org/10.1371/journal.pone.0211558 1560 

Moradi E, Pepe A, Gaser C, Huttunen H, Tohka J, Initiative ADN, et al. Machine learning framework for early MRI-1561 

based Alzheimer’s conversion prediction in MCI subjects. Neuroimage. 2015; 104:398–412. 1562 

https://doi.org/10.1016/j.neuroimage.2014.10.002 1563 

Mungas D, Beckett L, Harvey D, Tomaszewski Farias S, Reed B, Carmichael O, Olichney J, Miller J, DeCarli C. 1564 

Heterogeneity of cognitive trajectories in diverse older persons. Psychology and aging. 2010; 25(3):606. 1565 

https://doi.org/10.1037/a0019502 1566 

Patterson C. World Alzheimer Report 2018: the state of the art of dementia research: new frontiers. Alzheimer’s 1567 

Disease International (ADI): London, UK. 2018.  1568 

Petkoski S, Jirsa VK. Transmission time delays organize the brain network synchronization. Philosophical 1569 

Transactions of the Royal Society A. 2019; 377(2153):20180132. https://doi.org/10.1098/rsta.2018.0132 1570 

Petri G, et al. Homological scaffolds of brain functional networks. J R Soc Interface. 2014; 11(101):20140873. 1571 

Pillai AS, Jirsa VK. Symmetry breaking in space-time hierarchies shapes brain dynamics and behavior. Neuron. 2017; 1572 

94(5):1010–1026. https://doi.org/10.1016/j.neuron.2017.05.013 1573 

Poldrack, R.A., Gorgolewski, K.J., 2014. Making big data open: data sharing in neuroimaging. Nat Neurosci 17, 1510–1574 

1517. doi:10.1038/nn.3818 1575 

Proix T, Bartolomei F, Guye M, Jirsa VK. Individual brain structure and modelling predict seizure propagation. Brain. 1576 

2017; 140(3):641–654. https://doi.org/10.1093/brain/awx004 1577 

Proix T, Spiegler A, Schirner M, Rothmeier S, Ritter P, Jirsa VK. How do parcellation size and short-range connectivity 1578 

affect dynamics in large-scale brain network models? NeuroImage. 2016; 142:135–149. 1579 

https://doi.org/10.1016/j.neuroimage.2016.06.016 1580 



 

 56 

Rathore S, Habes M, Iftikhar MA, Shacklett A, Davatzikos C. A review on neuroimaging-based classification studies 1581 

and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. NeuroImage. 1582 

2017; 155:530–548. https://doi.org/10.1016/j.neuroimage.2017.03.057 1583 

Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P. Altered resting state networks in mild cognitive 1584 

impairment and mild Alzheimer’s disease: an fMRI study. Human brain mapping. 2005; 26(4):231–239. 1585 

https://doi.org/10.1002/hbm.20160 1586 

de Rosnay MD, The legal and policy framework for scientific data sharing, mining and reuse; 2017. 1587 

https://doi.org/10.4000/books.editionsmsh.9082 1588 

Saggio ML, Ritter P, Jirsa VK. Analytical operations relate structural and functional connectivity in the brain. PLoS 1589 

One. 2016; 11(8):e0157292. https://doi.org/10.1371/journal.pone.0157292 1590 

Sanchez E, Toro C, Carrasco E, Bonachela P, Parra C, Bueno G, Guijarro F. A knowledge-based clinical decision 1591 

support system for the diagnosis of Alzheimer disease. In: 2011 IEEE 13th International Conference on e-Health 1592 

Networking, Applications and Services IEEE; 2011. p. 351–357. https://doi.org/10.1109/HEALTH.2011.6026778 1593 

Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK. Mathematical framework for large-scale brain network modeling in The 1594 

Virtual Brain. Neuroimage. 2015; 111:385–430. https://doi.org/10.1016/j.neuroimage.2015.01.002 1595 

Sanz Leon P, Knock SA, Woodman MM, Domide L, Mersmann J, McIntosh AR, Jirsa V. The Virtual Brain: a simulator 1596 

of primate brain network dynamics. Frontiers in neuroinformatics. 2013; 7:10. 1597 

https://doi.org/10.3389/fninf.2013.00010 1598 

Schirner M, Rothmeier S, Jirsa VK, McIntosh AR, Ritter P. An automated pipeline for constructing personalized virtual 1599 

brains from multimodal neuroimaging data. NeuroImage. 2015; 117:343–357. 1600 

https://doi.org/10.1016/j.neuroimage.2015.03.055 1601 

Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano. RUSBoost. A Hybrid Approach to Alleviating Class Imbalance. 1602 

IEEE Transactions on Systems. Man, And Cybernetics—Part A: Systems And Humans. 2010; 40(1). 1603 

https://dx.doi.org/10.1109/tsmca.2009.2029559 1604 



 

 57 

Shen K, Bezgin G, Hutchison RM, Gati JS, Menon RS, Everling S, McIntosh AR. Information processing architecture of 1605 

functionally defined clusters in the macaque cortex. Journal of Neuroscience. 2012; 32(48):17465–17476. 1606 

https://doi.org/10.1523/JNEUROSCI.2709-12.2012 1607 

Shen K, Bezgin G, Schirner M, Ritter P, Everling S, McIntosh R. A macaque connectome for large-scale network 1608 

simulations in TheVirtualBrain. bioRxiv. 2019a; p. 480905. https://doi.org/10.1038/s41597-019-0129-z 1609 

Shen K, Goulas A, Grayson DS, Eusebio J, Gati JS, Menon RS, McIntosh AR, Everling S. Exploring the limits of network 1610 

topology estimation using diffusion-based tractography and tracer studies in the macaque cortex. 1611 

NeuroImage. 2019b; 191:81–92. https://doi.org/10.1016/j.neuroimage.2019.02.018 1612 

Sizemore AE, et al. Cliques and cavities in the human connectome. J Comput Neurosci. 2018; 44(1):115–145. 1613 

Spiegler A, Knösche TR, Schwab K, Haueisen J, Atay FM. Modeling brain resonance phenomena using a neural mass 1614 

model. PLoS computational biology. 2011; 7(12):e1002298. https://doi.org/10.1371/journal.pcbi.1002298 1615 

Stefanescu RA, Jirsa VK. A low dimensional description of globally coupled heterogeneous neural networks of 1616 

excitatory and inhibitory neurons. PLoS computational biology. 2008; 4(11):e1000219. 1617 

https://doi.org/10.1371/journal.pcbi.1000219 1618 

Stefanovski L, Triebkorn P, Spiegler A, Diaz-Cortes MA, Solodkin A, Jirsa V, McIntosh AR, Ritter P, Initiative ADN, et al. 1619 

Linking molecular pathways and large-scale computational modeling to assess candidate disease mechanisms 1620 

and pharmacodynamics in Alzheimer’s disease. BioRxiv. 2019; p. 600205. 1621 

https://doi.org/10.3389/fncom.2019.00054 1622 

Straathof M, Sinke MR, Dijkhuizen RM, Otte WM. A systematic review on the quantitative relationship between 1623 

structural and functional network connectivity strength in mammalian brains. Journal of Cerebral Blood Flow & 1624 

Metabolism. 2019; 39(2):189–209. https://doi.org/10.1177/0271678X18809547 1625 

Taylor L, Nitschke G. Improving deep learning with generic data augmentation. In: 2018 IEEE Symposium Series on 1626 

Computational Intelligence (SSCI) IEEE; 2018. p. 1542–1547. https://doi.org/10.1109/SSCI.2018.8628742 1627 

Termenon M, Jaillard A, Delon-Martin C, Achard S. Reliability of graph analysis of resting state fMRI using test-retest 1628 

dataset from the Human Connectome Project. Neuroimage. 2016; 142:172–187. 1629 

https://doi.org/10.1016/j.neuroimage.2016.05.062 1630 



 

 58 

Thorogood A, Mäki-Petäjä-Leinonen A, Brodaty H, Dalpé G, Gastmans C, Gauthier S, Gove D, Harding R, Knoppers 1631 

BM, Rossor M, et al. Consent recommendations for research and international data sharing involving persons 1632 

with dementia. Alzheimer’s & Dementia. 2018; 14(10):1334–1343. https://doi.org/10.1016/j.jalz.2018.05.011 1633 

Toga AW, Neu SC, Bhatt P, Crawford KL, Ashish N. The global Alzheimer’s association interactive network. 1634 

Alzheimer’s & Dementia. 2016; 12(1):49–54. https://doi.org/10.1016/j.jalz.2015.06.1896 1635 

Triebkorn P, Zimmermann J, Stefanovski L, Roy D, Solodkin A, Jirsa V, Deco G, Breakspear M, AR McIntosh, Ritter P. 1636 

Identifying optimal working points of individual Virtual Brains: A large-scale brain network modelling study. 1637 

2020; bioRxiv preprint. https://doi.org/10.1101/2020.03.26.009795 1638 

Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 62–79 (2013). 1639 

 Van Horn, J.D., Toga, A.W., 2014. Human neuroimaging as a “Big Data” science. Brain Imaging Behav 8, 323–331. 1640 

doi:10.1007/s11682-013-9255-y 1641 

de Vos F, Koini M, Schouten TM, Seiler S, van der Grond J, Lechner A, Schmidt R, de Rooij M, Rombouts SA. A 1642 

comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer’s disease. 1643 

Neuroimage. 2018; 167:62–72. https://doi.org/10.1016/j.neuroimage.2017.11.025 1644 

Walter, M., Alizadeh, S., Jamalabadi, H., Lueken, U., Dannlowski, U., Walter, H., Olbrich, S., Colic, L., Kambeitz, J., 1645 

Koutsouleris, N., Hahn, T., Dwyer, D.B., 2019. Translational machine learning for psychiatric neuroimaging. 1646 

Prog Neuropsychopharmacol Biol Psychiatry 91, 113–121. doi:10.1016/j.pnpbp.2018.09.014 1647 

Wang JY, Abdi H, Bakhadirov K, Diaz-Arrastia R, Devous Sr MD. A comprehensive reliability assessment of 1648 

quantitative diffusion tensor tractography. Neuroimage. 2012; 60(2):1127–1138. 1649 

https://doi.org/10.1016/j.neuroimage.2011.12.062 1650 

Wang Z, Wang J, Zhang H, Mchugh R, Sun X, Li K, Yang QX. Interhemispheric functional and structural disconnection 1651 

in Alzheimer’s disease: a combined resting-state fMRI and DTI study. PLoS One. 2015; 10(5):e0126310. 1652 

https://doi.org/10.1371/journal.pone.0126310 1653 

Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack Jr CR, Jagust W, Morris JC, et al. 1654 

The Alzheimer’s Disease Neuroimaging Initiative 3: Continued innovation for clinical trial improvement. 1655 

Alzheimer’s & Dementia. 2017; 13(5):561–571. https://doi.org/10.1016/j.jalz.2016.10.006 1656 



 

 59 

Wong KF, Wang XJ. A recurrent network mechanism of time integration in perceptual decisions. Journal of 1657 

Neuroscience. 2006; 26(4):1314–1328. https://doi.org/10.1523/JNEUROSCI.3733-05.2006 1658 

Woodman MM, Pezard L, Domide L, Knock SA, Sanz-Leon P, Mersmann J, McIntosh AR, Jirsa V. Integrating 1659 

neuroinformatics tools in TheVirtualBrain. Frontiers in neuroinformatics. 2014; 8:36. 1660 

https://doi.org/10.3389/fninf.2014.00036 1661 

Wyman BT, Harvey DJ, Crawford K, Bernstein MA, Carmichael O, Cole PE, Crane PK, DeCarli C, Fox NC, Gunter JL, et 1662 

al. Standardization of analysis sets for reporting results from ADNI MRI data. Alzheimer’s & Dementia. 2013; 1663 

9(3):332–337. https://doi.org/10.1016/j.jalz.2012.06.004 1664 

Yaeger LS, Lyon RF, Webb BJ. Effective training of a neural network character classifier for word recognition. In: 1665 

Advances in neural information processing systems; 1997. p. 807–816.  1666 

Zhang D, Shen D, Initiative ADN, et al. Multi-modal multi-task learning for joint prediction of multiple regression and 1667 

classification variables in Alzheimer’s disease. NeuroImage. 2012; 59(2):895–907. 1668 

https://doi.org/10.1016/j.neuroimage.2011.09.069 1669 

Zhang Z, Liao W, Chen H, Mantini D, Ding JR, Xu Q, Wang Z, Yuan C, Chen G, Jiao Q, et al. Altered functional–1670 

structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain. 2011; 134(10):2912– 1671 

2928. https://doi.org/10.1093/brain/awr223 1672 

Zimmermann J, Ritter P, Shen K, Rothmeier S, Schirner M, McIntosh AR. Structural architecture supports functional 1673 

organization in the human aging brain at a regionwise and network level. Human brain mapping. 2016; 1674 

37(7):2645–2661. https://doi.org/10.1002/hbm.23200 1675 

Zimmermann, J., Griffiths, J., Schirner, M., Ritter, P., McIntosh, A.R., 2019. Subject specificity of the correlation 1676 

between large-scale structural and functional connectivity. Netw Neurosci 3, 90–106. 1677 

doi:10.1162/netn_a_00055 1678 

 1679 

  1680 



 

 60 

Tables 1681 

Table 1. Pseudo-code for non-linear SC-to-FC completion (FC virtual duals to SC) 1682 

 1683 

algorithm non-linear SC-to-FC completion is 1684 
  1685 
external input:  empirical SC (SCemp) 1686 
output: non-linear virtual FC (FCMFM) 1687 
fixed parameters: noise level (σ), simulation time (T), range to scan Gstart ≤ G ≤ Gstop, range to scan 1688 

τstart ≤ τ ≤ τstop, other frozen Wong-Wang neural mass parameters  1689 
  1690 
begin 1691 

1. Construct a MFM embedding SCemp and the default frozen Wong-Wang neural mass parameters 1692 
for Gstart ≤ G ≤ Gstop 1693 
 for τstart ≤ τ ≤ τstop 1694 

2.1 Simulate the MFM with current parameter values for a short time 0.2*T (discarding 1695 
an initial transient) 1696 

2.2 Compute surrogate BOLD from MFM time-series via Balloon-Windkessel model 1697 
2.3 Compute Corr(BOLD), i.e. the time-averaged FC matrix 1698 
2.4 Compute stream of time-resolved FC(t) and the associated dFC matrix 1699 
2.5 Compute and store Crit1[G, τ] (Spatial heterogeneity of activations) 1700 
2.6 Compute and store Crit2[G, τ] (Clustering Coefficient of time-averaged FC matrix) 1701 
2.7 Compute and store Crit3[G, τ] (Clustering Coefficient of dFC matrix) 1702 

end 1703 
end 1704 
3. Identify G* and τ* for which Crit1[G, τ], Crit2[G, τ] and Crit3[G, τ] are jointly optimum 1705 
4. Simulate the MFM with parameter values G* and τ* for a time T (discarding an initial 1706 

transient) 1707 
5. Compute surrogate BOLD from MFM time-series via Balloon-Windkessel model 1708 
6. Compute C = Corr(BOLD), i.e. the time-averaged FC matrix at G* and τ* 1709 
return FCMFM = C  1710 

end 1711 

 1712 

  1713 
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Table 2. Pseudo-code for non-linear FC-to-SC completion (SC virtual duals to FC) 1714 

 1715 

algorithm non-linear FC-to-SC completion is 1716 
  1717 
external input:  empirical FC (FCemp) 1718 
output: non-linear virtual SC (SCMFM) 1719 
fixed parameters: FC* fitting quality (CCtarget), initial guess SC*(0), learning rate λ, noise level (σ), 1720 

simulation time (T), range to scan Gstart ≤ G ≤ Gstop, range to scan τstart ≤ τ ≤ τstop, other frozen 1721 
Wong-Wang neural mass parameters  1722 

  1723 
begin 1724 
 1. FC*(0) = non-linear SC-to-FC completion starting from SC*(0) 1725 
 2. Dist = corr(FC*(0), FCemp) 1726 
 3. iteration = 0 1727 

while (Dist ≤ CCtarget) 1728 
 iteration = iteration + 1 1729 
 SC*(iteration) = SC*(iteration - 1) + λ*(FC*(iteration) - FC*(iteration)) 1730 
 FC*(iteration) = non-linear SC-to-FC completion starting from SC*(iteration) 1731 

  Dist = corr(FC*(iteration), FCemp) 1732 
end 1733 
return SCMFM = SC*(iteration)  1734 

end 1735 

 1736 

  1737 
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Table 3. Single-subject correlations between network features in real and bivirtual dual connectomes for 1738 

the ADNI dataset 1739 

 1740 

 1741 

 SC FC 

 
Median and range 

Within subject 

cross-subject 

∆% 
Median and range 

Within subject 

cross-subject 

∆% 

Strength 
0.16 ± 0.20 

25 ± 18 
0.77 ± 0.18 

342 ± 8 
0.13 ± 0.17 0.17 ± 0.20 

Clustering 
-0.05 ± 0.12 

-17 ± 24 
0.65 ± 0.24 

359 ± 13 
-0.06 ± 0.11 0.14 ± 0.21 

Centrality 
0.21 ± 0.18 

24 ± 12 
0.66 ± 0.20 

312 ± 10 
0.16 ± 0.15 0.16 ± 0.18 

Communities 
59% ± 10% 

23 ± 2 
45% ± 10% 

260 ± 6 
47% ± 8% 12% ± 6% 

 1742 

Indicated values for real/bivirtual dual correlations (for strength, clustering and centrality coefficients) or 1743 

relative mutual information (for communities) are mean ± standard deviation of the mean over subjects.  1744 

 1745 

  1746 
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Table 4. Single-subject correlations between network features in real and bivirtual dual connectomes for 1747 

the healthy ageing dataset 1748 

 1749 

 SC FC 

 
Median and range 

Within subject 

cross-subject 

∆% 
Median and range 

Within subject 

cross-subject 

∆% 

Strength 
0.80 ± 0.04 

5 ± 1 
0.65 ± 0.18 

75 ± 7 
0.76 ± 0.07 0.37 ± 0.16 

Clustering 
0.83 ± 0.06 

6 ± 1 
0.64 ± 0.22 

70 ± 8 
0.79 ± 0.08 0.38 ± 0.19 

Centrality 
0.80 ± 0.05 

4 ± 1 
0.63 ± 0.18 

65 ± 7 
0.76 ± 0.06 0.38 ± 0.16 

Communities 
44% ± 8% 

16 ± 3 
53% ± 10% 

10 ± 3 
38% ± 8% 48% ± 12% 

 1750 

Indicated values for real/bivirtual dual correlations (for strength, clustering and centrality coefficients) or 1751 

relative mutual information (for communities) are mean ± standard deviation of the mean over subjects..  1752 

 1753 
  1754 
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Table 5. Percent improvement in connectome matching obtained by using personalized virtual and 1755 

bivirtual duals 1756 

 1757 
Type of completion ∆Pers ADNI ∆Pers Healthy aging 

SCemp to FCvirt linear +26% ± 7% +12% ± 4% 

 nonlinear +17% ± 5% +13% ± 4% 

SCemp to SCbivirt linear +40% ± 18% +23% ± 8% 

 nonlinear +17% ± 5% +13% ± 4% 

FCemp to SCvirt linear +51% ± 35% +28% ± 22% 

 nonlinear +200% ± 37% +87% ± 19% 

FCemp to FCbivirt linear +46% ± 70% +17% ± 28% 

 nonlinear +297% ± 140% +108% ± 52% 

FCemp test/retest ∆Pers +22% ± 13% 

 1758 

Indicated values for real/virtual and bivirtual dual are mean ± standard deviation of the mean over subjects.  1759 

 1760 

  1761 
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Figures 1762 

 1763 

 1764 

 1765 

Figure 1. Connectomic information extracted from the ADNI dataset has gaps. A) The different dataset 1766 

releases by the ADNI consortium include a variety of information relative to different biomarkers and imaging 1767 

modalities. Here, we focus on structural and functional MRI features and, chiefly:  T1, DTI (allowing to extract 1768 

empirical structural connectomes); and resting-state fMRI BOLD time-series (allowing to extract empirical 1769 

functional connectomes). B) Matrices SCemp and FCemp summarizing connectomic information about, 1770 

respectively structural connectivity (SC) and functional connectivity (FC) are obtained via elaborated multi-step 1771 

processing pipelines, using various software including FreeSurfer, FSL, ANTS, and MRtrix3. C) The total 1772 

number of subjects in Healthy ageing dataset is 49 between the ages of 18 and 80 (mean = 42.16 ± 18.37; 19 1773 

male/30 female) in which with approximately equal number of subjects they were divided into 4 categories 1774 

(I:IV). The total number of ADNI-derived subjects investigated in this study is 244, in which 74 subjects were 1775 

control, while 119 subjects labeled as MCI, and 51 subjects as AD. Out of these 244, FCemp could be extracted 1776 

for 168 subjects, and SCemp for 88. However, SCemp and FCemp were both simultaneously available for just a 1777 

minority of 12 subjects (referred to as the “SCemp+FCemp subset”). The available data is shown in blue and the 1778 

missing data in grey, the SCemp+FCemp subset is shown in pink.  1779 

  1780 
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 1781 

 1782 

Figure 2. From mean-field modeling to connectomic data completion. A) We present here a graphical 1783 

summary of the various computational simulation and inference strategies used in this study to bridge between 1784 

different types of connectivity matrices. Mean-field simulation and the associated analytic theory can be used to 1785 

generate virtual FC, through simulations of resting-state whole-brain models embedding a given input SC 1786 

connectome (ascending arrows). Algorithmic procedures, that may still include computational simulation steps, 1787 

can be used to perform the inverse inference of a virtual SC that is compatible with a given input FC 1788 

(descending arrows). Both simulation and inference can be performed using simpler linear (green arrows) or 1789 

non-linear (blue arrows) approaches. When the input SC (or FC) connectomes used as input for FC simulation 1790 

(or SC inverse inference) correspond to empirical connectomes SCemp (or FCemp), derived from T1 and DTI 1791 

(fMRI) images, then model simulation (inversion) can be used to complete gaps in the dataset, whenever FCemp 1792 

(or SCemp) is missing. We refer then to these operations as: B) SC-to-FC completion; and, C) FC-to-SC 1793 

completion. Both exist in linear and non-linear versions. 1794 

  1795 
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 1796 

 1797 

 1798 

Figure 3. Non-linear SC-to-FC data completion. Simulations of a non-linear model embedding a given 1799 

input SCemp matrix can be used to generate surrogate FCMFM matrices. A) Systematic exploration (here shown 1800 

for a representative subject) of the dependency of the correlation between FCemp
 and FCMFM on the MFM 1801 

parameters G (inter-regional coupling strength) and τ (synaptic time-constant of within-region excitation) 1802 

indicates that the best fitting performances are obtained when parameters are concentrated in a narrow concave 1803 

stripe across the G/τ plane. B) Enlarged zoom of panel A over the range G ∈ [1 3] and τ ∈ [10 30]. C) For a 1804 

value of τ = 25, representatively chosen here for illustration, we identify a value G* for which the Pearson 1805 

correlation between FCemp
 and FCMFM reaches a clear local maximum. Panels A-C thus indicate that it makes 1806 

sense speaking of a best-fit zone and that reliable nonlinear SC-to-FC completion should be performed using 1807 

MFM parameters within this zone. Three criteria help us identifying parameter combinations in this best fitting 1808 

zone when the actual FCemp
 is unknown.  D) First criterion: we define the spatial coefficient of variation of the 1809 

time-series of simulated BOLD activity TSMFM as the ratio between the variance and the mean across regions of 1810 



 

 68 

the time-averaged activation of different regions. The best fit zone is associated with a peaking of this spatial 1811 

coefficient of variation, associated with a maximally heterogeneous mix or low and high activation levels for 1812 

different regions (see time-series in lower cartoons). E) Second criterion: in the best fitting zone, the resulting 1813 

FCMFM is neither randomly organized nor excessively regular (synchronized) but presents a complex clustering 1814 

structure (see lower cartoons), which can be tracked by a peak in the clustering coefficient of the FCMFM, seen as 1815 

weighted adjacency matrix. F) Third criterion: in the best fitting zone, resting-state FCMFM display a relatively 1816 

richer dynamics than in other sectors of the parameter space. This gives rise to an “dFC matrix” (correlation 1817 

between time-resolved FC observed at different times) which is neither random nor too regular but displays a 1818 

certain degree of clustering (see lower cartoons). The emergence of complex dynamics of FC can be tracked by 1819 

an increase in the clustering coefficient of the dFC matrix extracted from simulated resting-state dynamics. G) 1820 

The boxplot shows the distribution of correlations between the actual FCemp and FCMFM estimated within the 1821 

best fitting zone for all subjects from the “SCemp + FCemp” ADNI subset and the ageing dataset. See Extended 1822 

Data Figure 3-1 for linear SC-to-FC completion and Extended Figure 3-2 for dependency of MFM best fit zone 1823 

on additional parameters. 1824 

  1825 
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 1826 

 1827 

 1828 

Figure 4. Non-linear FC-to-SC data completion. An iterative procedure can be used to perform resting-1829 

state simulations of an MFM model starting from a randomly guessed structural connectome SC* and 1830 

progressively modify this SC* to make it compatible with a known target FCemp.  A) Starting from an initial 1831 

random SC*(0) matrix, there is no correlation between the target FCemp and the generated FC*(0) matrix. 1832 

However, by adjusting the weights of the used SC* through the algorithm of Table 2, SC* gradually develops a 1833 

richer organization, leading to an increase of the correlation between FC* and FCemp (violet dashed line) and in 1834 

parallel, of the correlation between SC* and SCemp (violet solid line), as shown here for a representative subject 1835 

within the “SCemp+FCemp” subset. The algorithm stops when the correlation between FC* and the input target 1836 

FCemp reaches a desired quality threshold (here 0.7 after 2000 iterations) and the SC* at the last iteration is used 1837 

as virtual surrogate SCMFM. B) The boxplot shows the distribution of correlation between SCemp and SCMFM for 1838 

all subjects in the “SCemp + FCemp” ADNI subset and the Healthy Ageing dataset. C) The correlation between 1839 

SCemp and SCMFM can vary using different random initial connectomes SC*(0). Here we show a boxplot of the 1840 

percent dispersions of the correlation values obtained for different initial conditions around the median 1841 

correlation value. The fact that these dispersions lie within a narrow interval of ±2.5% indicates that the 1842 
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expected performance is robust against changes of the initial conditions. See Extended Data Figure 4-1 for 1843 

linear FC-to-SC completion. 1844 

 1845 

1846 
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 1847 

 1848 

Figure 5. Bi-virtual connectomes. This figure shows the correspondence between empirical and bi-virtual SC 1849 

and FC pairs, both when using chained linear (SLM-based) and nonlinear (MFM-based) completion procedures. 1850 

A) For 88 subjects from the ADNI-subset with only SCemp available, considering the linear bi-virtual completion 1851 

chain SCemp to FCSLM to SCbi-SLM, we obtained a median correlation between SCemp and SCbi-SLM equal to 0.63 1852 

and 0.92 for 49 subjects from the Healthy Ageing dataset (green boxplot); simultaneously, considering the non-1853 

linear bi-virtual completion chain SCemp to FCMFM to SCbi-MFM, we obtained a median correlation between SCemp 1854 

and SCbi-MFM equal to 0.58 for the ADNI datast and 0.64 for the Healthy Ageing dataset (blue boxplot). B) For 1855 

168 subjects from the ADNI-subset with only FCemp available, considering the linear bi-virtual completion chain 1856 

FCemp to SCSLM to FCbi-SLM, we obtained a median correlation between FCemp and FCbi-SLM equal to 0.12 and 0.42 1857 

for 49 subjects from Healthy Ageing dataset (green boxplot); simultaneously, considering the non-linear bi-1858 

virtual completion chain FCemp to SCMFM to FCbi-MFM, we obtained a median correlation between FCemp and FCbi-1859 

MFM equal to 0.59 for the ADNI dataset and 0.45 for the Healthy Ageing dataset (blue boxplot).  1860 

  1861 



 

 72 

 1862 

Figure 6. Inter-subject distances for empirical – bivirtual pairs. We show here the distances between the 1863 

empirical SCemp (or FCemp) of different subjects and the inter-subject distances for their corresponding pairs of 1864 

subjects from bivirtual SCbi-MFM (or FCbi-MFM). A-B) For the ADNI dataset the correlation between the inter-1865 

subject distances in real and dual spaces for SC (between SCemp and SCbi-MFM) were significant and equal to 1866 

0.39, and for FC pairs (between FCemp and FCbi-MFM) equal to 0.43. C-D) The same inter-subject distances for 1867 

the healthy ageing dataset were measured, with correlation values equal to 0.53 and 0.40 for SC and FC 1868 

empirical-bivirtual pairs, respectively.  1869 

  1870 
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 1871 

 1872 

Figure 7. Classification of MCI patients based on empirical and virtual connectomes and virtual cohorts. 1873 

A) Data completion procedures can be seen as bridges between different connectome spaces, mapping empirical 1874 

connectomes in “real space” to subject-specific dual connectomes in virtual or bivirtual spaces, depending on 1875 

the number of virtualization steps applied to the original connectome. Subjects classifications into controls (light 1876 

blue) or MCI (yellow) and AD (red) patients are shared between empirical connectomes and their virtual and 1877 

bivirtual duals. Virtual duals have a different nature than their associated empirical connectomes (empirical SCs 1878 

are mapped to virtual FCs and vice versa), while bivirtual duals have the same nature. B-C) Performance of tree 1879 
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ensemble classifiers discriminating control from patient subjects, evaluated via Receiver Operator Curve 1880 

analysis (fractions of true vs false positive, as a function of applied decision threshold; generalization 1881 

performance via crossvalidation; thick lines indicate median performance, shaded regions 95% confidence 1882 

intervals). In panel B,  we show example of classification in dual space, compared with a real connectome space 1883 

classification: in green classification with classifiers trained on empirical SCs evaluated on other empirical SCs; 1884 

in blue, classifiers trained on virtual FCs evaluated on other virtual FCs (or the virtual duals of other empirical 1885 

SCs); in magenta, classifiers trained on bivirtual SCs evaluated on other bivirtual SCs (or the bivirtual duals or 1886 

other empirical SCs). In panel B, we show an example of cross-space classification, compared with a real 1887 

connectome space classification: in green classification with classifiers trained on empirical FCs evaluated on 1888 

other empirical FCs; and in orange, classification with classifiers trained on bivirtual FCs evaluated directly on 1889 

other empirical FCs, without prior “lifting” into bivirtual dual space. In all the shown cases, classifications 1890 

performed with classifiers trained in virtual or bivirtual connectomes are slightly less performing than for 1891 

classifiers trained on empirical data, but the drop in performance is not significant for most thresholds. D-F) The 1892 

confusion matrix for classification of four age classes of the healthy ageing database using the random forest 1893 

Breiman algorithm is shown. D) When the classifier was trained and tested on the empirical SC and FC 1894 

connectome, the accuracy was closed to ~0.37 and ~0.43 respectively. E) The classification accuracy for the 1895 

classifier which was trained and tested on the virtual connectomes was above the chance level (~0.25) with 1896 

~0.43 for SCSLM and ~0.43 for FCMFM connectomes which the performance was better or equivalent to the 1897 

empirical connectome (D). F) Here we shown the classification performance of cross-training, when the 1898 

classifier was trained on SCMFM and tested on FCemp with accuracy equal to ~0.35 (F-left) and when the 1899 

classifier was trained on FCSLM and tested on FCemp with accuracy of ~0.30 (F-right) (see Extended Data Figure 1900 

7-1 for the classification performances on other virtual connectomes from healthy ageing dataset). 1901 

  1902 
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 1903 

 1904 

Figure 8. Correspondence of network topology between empirical and their bivirtual dual connectomes 1905 

(ADNI dataset). The bivirtual dual connectomes share the same nature (SC or FC) of the corresponding 1906 

empirical connectome. Therefore, network topology can be directly compared between empirical and bivirtual 1907 

SCs or empirical and bivirtual FCs. A-B) We show here scatter plots of connectivity strengths (top left), local 1908 

clustering coefficients (top right) and local centrality coefficients (bottom left) for different brain regions and 1909 

subjects, plotting feature values for empirical connectomes vs their bivirtual counterparts. We also show 1910 

histograms over different subjects of the relative mutual information (normalized between 0 and 1, the latter 1911 
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corresponding to perfect matching) between the community structures (bottom right) of empirical connectomes 1912 

and their bivirtual duals. Results are shown in panel A for SC and in panel B for FC connectomes for the ADNI 1913 

dataset (see Extended Data Figure 8-1 for analogous results holding for the  healthy ageing dataset). In both 1914 

cases, there is a remarkable correlation at the ensemble level between network topology features for empirical 1915 

bivirtual connectomes (see Table 3 for the even superior correspondence at the single subject level for the ADNI 1916 

dataset).  1917 
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 1919 

 1920 

 1921 

Figure 9 – The Virtual cohorts. We created virtual cohorts of surrogate FC data, generating 100 different 1922 

FCMFM matrices for each of the 88 subjects in the ADNI dataset with an available SCemp. A) Shown here is a 1923 

low-dimensional t-SNE projection of the resulting 8800 virtual FCMFM ‘s, colored depending on the associated 1924 

subject label (“blue” for control subjects, “yellow” for MCI patients, and “red” for AD patients). For the 1925 

subjects in the ADNI “FC+SC” subset, we also projected the actual empirical FCemp connectome and link their 1926 

projections to one virtual connectome within the cohort for the matching subjects. All FCemp connectomes 1927 

appear grouped in a single cluster, since all far away to connectomes in dual space (they belong to a different 1928 

space, so appear as “distant” in this projected view emphasizing differerencies within virtual space). However, 1929 

virtual cohorts inter-relations reproduce an exploded view of the fine structure of this All FCemp cluster.  Virtual 1930 

connectomes within a same virtual cohort are closer between them than connectomes belonging to different 1931 

cohorts since they maintain a strict relation to their empirical counterparts and are thus good candidates for data 1932 

augmentation applications. B) We show, on top, example alternative connectomes within a representative cohort 1933 

for a single subject that could be used as alternative identity preserving distorted connectomes for data 1934 

augmentation applications, analogously to slightly distorted versions of object images (on the bottom) used to 1935 

boost training of object classifiers. 1936 
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Extended data 1938 

 1939 

Extended Data 1. MATLAB® scripts for connectome generation and workspaces including virtual SC and 1940 

FC connectomes generated with our data completion pipelines as well as virtual cohorts. All workspaces 1941 

available at the URL: https://github.com/FunDyn/VirtualCohorts.   1942 

 1943 

 1944 
 1945 

Extended Data Figure 2-1. Viability of data completion. We checked whether the performance of data 1946 

completion based on the algorithmic procedures of Tables 1 and 2 or 1-1 and 2-1 is superior to the one of a 1947 

trivial strategy in which the target connectome to reconstruct is just taken to be identical to the “other 1948 

connectome” (i.e. using SC, when trying to reconstruct missing FC; or using FC, when trying to reconstruct 1949 

missing SC). A-B) We computed percent improvement in data completion over the trivial “other connectome” 1950 

strategy using a SLM-based or an MFM-based data completion method, focusing on the “SCemp + FCemp” subset 1951 

for which both ground truth connectomes are known. A) Percent improvements in data completion when 1952 

completing FC from SC. B) Percent improvements in data completion when completing SC from FC. For the 1953 

SLM-based functional data completion approach, the use of  FCSLM on the ADNI dataset resulted in a worse 1954 

performance (median drop ∆୲୰୧୴୧ୟ୪= -15%, see Materials and Methods for definition), however, for the healthy 1955 

ageing dataset the use of FCSLM resulted in a clearly better performance than when using “the other connectome” 1956 

(median improvement ∆୲୰୧୴୧ୟ୪= +40%); similarly, applying the SLM-based approach for the structural data 1957 

completion, the use of SCSLM rather than FCemp as an ersatz for SCemp leads to drops of improvements in quality 1958 

with a median value of approximately -20%, for the ADNI dataset but an increase of nearly ~50% for the 1959 

healthy aging dataset. Thus, the performance of linear data completion can yield to good results, but this 1960 

performance did not robustly generalize through datasets. On the other hand, for the MFM-based functional data 1961 

completion, the median improvement was close to ~20% for both datasets which can go as high as +60% in 1962 

some subjects; using the same approach but for the structural data completion, the performance was lower than 1963 

non-linear SC-to-FC data completion, with median improvement of ~15% for the ADNI dataset and of ~10% 1964 

for the healthy aging dataset. 1965 

  1966 

  1967 



 

 79 

 1968 

 1969 

 1970 

 1971 

Extended Data Figure 3-1. Linear SC-to-FC data completion. The functional data completion can also be 1972 

done using the linear model starting from SCemp matrices. A) the systematic exploration (for a representative 1973 

subject) of the dependency of correlation between FCemp and FCSLM on the SLM parameter G (global scale of 1974 

long-range connectivity strength) shown by the violet line indicates that the best fitting value G* (dashed line) 1975 

can be obtained slightly before the critical point of the system Gcritic =  1 ⁄(ߣ)ݔܽ݉  which since the SCemp 1976 

matrices are normalized to one 1 ⁄(ߣ)ݔܽ݉  = 1 and Gcritic = 1. The green lines display 5 and 95 percentiles of 1977 

bootstrap resampling. The inset boxplot gives the distribution of G* over all the subjects in the “SCemp + FCemp” 1978 

subset; for the SLM SC-to-FC completion, we used a common value G*ref = 0.83, equal to the median of the 1979 

boxplot. B) The boxplot reports the distribution of Pearson correlation between FCemp and FCSLM for all subjects 1980 

from the “SCemp + FCemp” subset with a median equal to 0.243 for the ADNI dataset and 0.377 for the Healthy 1981 

Ageing dataset. C) In case of using the common value G*ref  for all subjects instead of the actual personalized 1982 

optimum G* for each subject in the “SCemp + FCemp” subset, the value of quality loss for each subject is shown 1983 

in the boxplot with median equal to 0.5%.  1984 

 1985 

Extended Data Figure 3-2. The dependency of best MFM fit zone on additional regional dynamics 1986 

parameters. In the non-linear data completion, the global parameters of the MFM model are G (inter-regional 1987 

coupling strength), τ (synaptic time-constant of within-region excitation), ߱ (relative strength of recurrent 1988 

within-region connections) and I (external input) which parameters G and τ were investigated in this paper (see 1989 

Figure 3). Here we showed for different values of ߱ and I, the narrow concave stripe of Figure 3.A as the 1990 

representative of the best fitting zone is slightly shifted in the G/τ plane, suggesting G and τ are more sensitive 1991 

parameters and need to be explored rather than ߱ and I. 1992 

  1993 
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 1994 

 1995 

 1996 

Extended Data Figure 4-1. Linear FC-to-SC data completion. Using the linear model, it is equivalently 1997 

possible to infer the structural SCSLM matrices from FCemp. Since in this approach the free parameters of SLM 1998 

model appear as scaling factor, they don’t affect the correlation of the inferred SCSLM with the SCemp so there is 1999 

no need for parameter exploration here. The distribution of the correlation values for all the subjects from the 2000 

“SCemp + FCemp” ADNI subset is shown in the boxplot with median equal to 0.21 and 0.42 for the Healthy 2001 

Ageing dataset.  2002 

 2003 
 2004 
Extended Data Figure 6-1. The global distributions of link weights for all different types of connectomes. 2005 

Most of the distributions show similarity in shape with their empirical counterparts (pink). SC weights 2006 

distributions with a peak for small values and a fat right tail; FC weights distributions with more symmetric and 2007 

a broader peak at intermediate strengths.  2008 

 2009 
 2010 
Extended Data Figure 7-1. Age class discriminations on the healthy ageing dataset. A) The classification 2011 

performances when the classifier was train and tested on the same virtual connectome is above chance level 2012 

(~0.25) with maximum accuracy of ~0.42 for FCSLM-bi and minimum accuracy of ~0.29 for FCMFM-bi. B) The 2013 

classification accuracy dropped when the classifier was trained on the virtual connectome and tested on the 2014 

empirical connectome. The only cases where the accuracy was above chance level was when the classifier was 2015 

trained on SCSLM and SCSLM-bi and tested on FCemp connectome, with an accuracy of ~0.28.  2016 

 2017 
 2018 

Extended Data Figure 8-1. Correspondence of network topology between empirical and their bivirtual 2019 

dual connectomes (healthy aging dataset). We show here scatter plots of connectivity strengths (top left), 2020 

local clustering coefficients (top right) and local centrality coefficients (bottom left) for different brain regions 2021 

and subjects, plotting feature values for empirical connectomes vs their bivirtual counterparts and the 2022 

histograms over different subjects of the relative mutual information (normalized between 0 and 1, the latter 2023 

corresponding to perfect matching) between the community structures (bottom right) of empirical connectomes 2024 

and their bivirtual duals. Results are shown in panel A for SC and in panel B for FC connectomes for the 2025 

healthy ageing dataset (see Figure 8 for the comparison with the ADNI dataset). Again for both cases, we see a 2026 
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remarkable correlation at the ensemble level between network topology features for empirical bivirtual 2027 

connectomes (see Table 4 for the superior correspondence at the single subject level for the ageing dataset).  2028 
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